题名 | Diagnostic Prediction of portal vein thrombosis in chronic cirrhosis patients using data-driven precision medicine model |
作者 | |
通讯作者 | Li, Chuan-Xing; Cheng, Lixin; Li, Xun |
发表日期 | 2024
|
DOI | |
发表期刊 | |
ISSN | 1467-5463
|
EISSN | 1477-4054
|
卷号 | 25期号:1 |
摘要 | Background Portal vein thrombosis (PVT) is a significant issue in cirrhotic patients, necessitating early detection. This study aims to develop a data-driven predictive model for PVT diagnosis in chronic hepatitis liver cirrhosis patients.Methods We employed data from a total of 816 chronic cirrhosis patients with PVT, divided into the Lanzhou cohort (n = 468) for training and the Jilin cohort (n = 348) for validation. This dataset encompassed a wide range of variables, including general characteristics, blood parameters, ultrasonography findings and cirrhosis grading. To build our predictive model, we employed a sophisticated stacking approach, which included Support Vector Machine (SVM), Naive Bayes and Quadratic Discriminant Analysis (QDA).Results In the Lanzhou cohort, SVM and Naive Bayes classifiers effectively classified PVT cases from non-PVT cases, among the top features of which seven were shared: Portal Velocity (PV), Prothrombin Time (PT), Portal Vein Diameter (PVD), Prothrombin Time Activity (PTA), Activated Partial Thromboplastin Time (APTT), age and Child-Pugh score (CPS). The QDA model, trained based on the seven shared features on the Lanzhou cohort and validated on the Jilin cohort, demonstrated significant differentiation between PVT and non-PVT cases (AUROC = 0.73 and AUROC = 0.86, respectively). Subsequently, comparative analysis showed that our QDA model outperformed several other machine learning methods.Conclusion Our study presents a comprehensive data-driven model for PVT diagnosis in cirrhotic patients, enhancing clinical decision-making. The SVM-Naive Bayes-QDA model offers a precise approach to managing PVT in this population. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 通讯
|
资助项目 | National Natural Science Foundation of China["32370711","32300554"]
; Shenzhen Science and Technology Program[JCYJ20220530152409020]
; Shenzhen Medical Research Fund[A2303033]
; Clinical Research Center for General Surgery of Gansu Province[20JR10FA661]
|
WOS研究方向 | Biochemistry & Molecular Biology
; Mathematical & Computational Biology
|
WOS类目 | Biochemical Research Methods
; Mathematical & Computational Biology
|
WOS记录号 | WOS:001173375300080
|
出版者 | |
ESI学科分类 | COMPUTER SCIENCE
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:3
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/788948 |
专题 | 南方科技大学第一附属医院 |
作者单位 | 1.First Hosp Lanzhou Univ, Lanzhou 730000, Peoples R China 2.Southern Univ Sci & Technol, Jinan Univ, Affiliated Hosp 1, Shenzhen Peoples Hosp,Clin Med Coll 2, Shenzhen 518000, Peoples R China 3.Karolinska Inst, Resp Med Unit, Dept Med & Ctr Mol Med, S-16340 Stockholm, Sweden 4.First Hosp Lanzhou Univ, Lanzhou, Peoples R China 5.Karolinska Inst, Solna, Sweden 6.Univ Helsinki, Helsinki, Finland 7.Helsinki Univ Hosp, Helsinki, Finland 8.Great Bay Univ, Sch Comp & Informat Technol, Portsmouth, NH USA 9.Great Bay Inst Adv Study, Princeton, NJ USA 10.Lanzhou Univ, Sch Clin Med, Lanzhou, Peoples R China 11.Jilin Hepatobiliary Dis Hosp, Changchun, Peoples R China 12.Karolinska Inst, Resp Med Unit, Dept Med, Stockholm, Sweden 13.Karolinska Inst, Ctr Mol Med, Stockholm, Sweden 14.Shenzhen Peoples Hosp, bioinformat, Shenzhen, Peoples R China 15.First Hosp Lanzhou Univ, Dept Gen Surg, Lanzhou, Peoples R China 16.First Hosp Lanzhou Univ, Key Lab Biotherapy & Regenerat Med Gansu Prov, Lanzhou, Peoples R China |
通讯作者单位 | 南方科技大学第一附属医院 |
推荐引用方式 GB/T 7714 |
Li, Ying,Gao, Jing,Zheng, Xubin,et al. Diagnostic Prediction of portal vein thrombosis in chronic cirrhosis patients using data-driven precision medicine model[J]. BRIEFINGS IN BIOINFORMATICS,2024,25(1).
|
APA |
Li, Ying.,Gao, Jing.,Zheng, Xubin.,Nie, Guole.,Qin, Jican.,...&Li, Xun.(2024).Diagnostic Prediction of portal vein thrombosis in chronic cirrhosis patients using data-driven precision medicine model.BRIEFINGS IN BIOINFORMATICS,25(1).
|
MLA |
Li, Ying,et al."Diagnostic Prediction of portal vein thrombosis in chronic cirrhosis patients using data-driven precision medicine model".BRIEFINGS IN BIOINFORMATICS 25.1(2024).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论