中文版 | English
题名

Synergistic Entropy Engineering with Vacancies: Unraveling the Cocktail Effect for Extraordinary Thermoelectric Performance in SnTe-Based Materials

作者
通讯作者Li, Hai-Feng; He, Jiaqing
发表日期
2024-03-01
DOI
发表期刊
ISSN
1616-301X
EISSN
1616-3028
摘要
["The pursuit of high-power factor and low lattice thermal conductivity simultaneously in thermoelectric research is longstanding. Herein, great success has been achieved in SnTe-based materials by employing a proposed strategy of entropy engineering involving vacancies, thus leveraging the promising cocktail effect. Significant band convergence and flatness effects have given rise to exceptionally high density of state carrier effective mass and Seebeck coefficients. These effects have also led to the theoretical optimal carrier concentration closely aligning with the actual carrier concentration. Furthermore, the entropy engineering involving vacancies has induced pronounced lattice disorder and a wealth of nanostructures, facilitating multi-scale phonon scattering. Consequently, impressive thermoelectric performance is realized in AgSb3Pb2Ge2Sn6Te15: room-temperature ZT of approximate to 0.4, peak ZT of approximate to 1.3 at 623 K, and average ZT of approximate to 1.0 (300-773 K). A thermoelectric module, comprising this p-type material and the homemade n-type PbTe, is assembled, demonstrating a competitive conversion efficiency of 9.3% at a temperature difference of 478 K. This work not only provides valuable insights into the modulation of electron/phonon transports but also establishes an effective paradigm of entropy engineering involving vacancies.","Unlike the exclusive implementation of entropy engineering or vacancy engineering in SnTe-based materials, a strategy of entropy engineering involving vacancies is proposed in this work to leverage a promising cocktail effect. The approach results in the simultaneous attainment of high power factor and low lattice thermal conductivity, culminating in extraordinary thermoelectric performance at low-medium temperatures. image"]
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
资助项目
Science and Technology Innovation Committee Foundation of Shenzhen["JCYJ20200109141205978","ZDSYS20141118160434515"] ; Science and Technology Development Fund, Macao SAR["0090/2021/A2","0049/2021/AGJ"] ; null[11934007] ; null[11874194]
WOS研究方向
Chemistry ; Science & Technology - Other Topics ; Materials Science ; Physics
WOS类目
Chemistry, Multidisciplinary ; Chemistry, Physical ; Nanoscience & Nanotechnology ; Materials Science, Multidisciplinary ; Physics, Applied ; Physics, Condensed Matter
WOS记录号
WOS:001180206700001
出版者
ESI学科分类
MATERIALS SCIENCE
来源库
Web of Science
引用统计
被引频次[WOS]:3
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/788992
专题理学院_物理系
作者单位
1.Southern Univ Sci & Technol, Dept Phys, Shenzhen Key Lab Thermoelect Mat, Shenzhen 518055, Peoples R China
2.Univ Macau, Inst Appl Phys & Mat Engn, Ave Univ, Taipa 999078, Macao, Peoples R China
第一作者单位物理系
通讯作者单位物理系
第一作者的第一单位物理系
推荐引用方式
GB/T 7714
Xia, Junchao,Yang, Jianmin,Wang, Yan,et al. Synergistic Entropy Engineering with Vacancies: Unraveling the Cocktail Effect for Extraordinary Thermoelectric Performance in SnTe-Based Materials[J]. ADVANCED FUNCTIONAL MATERIALS,2024.
APA
Xia, Junchao.,Yang, Jianmin.,Wang, Yan.,Jia, Baohai.,Li, Shangyang.,...&He, Jiaqing.(2024).Synergistic Entropy Engineering with Vacancies: Unraveling the Cocktail Effect for Extraordinary Thermoelectric Performance in SnTe-Based Materials.ADVANCED FUNCTIONAL MATERIALS.
MLA
Xia, Junchao,et al."Synergistic Entropy Engineering with Vacancies: Unraveling the Cocktail Effect for Extraordinary Thermoelectric Performance in SnTe-Based Materials".ADVANCED FUNCTIONAL MATERIALS (2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Xia, Junchao]的文章
[Yang, Jianmin]的文章
[Wang, Yan]的文章
百度学术
百度学术中相似的文章
[Xia, Junchao]的文章
[Yang, Jianmin]的文章
[Wang, Yan]的文章
必应学术
必应学术中相似的文章
[Xia, Junchao]的文章
[Yang, Jianmin]的文章
[Wang, Yan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。