中文版 | English
题名

Predicting Stick-Slips in Sheared Granular Fault Using Machine Learning Optimized Dense Fault Dynamics Data

作者
通讯作者Gao, Ke
发表日期
2024-02-01
DOI
发表期刊
EISSN
2077-1312
卷号12期号:2
摘要
Predicting earthquakes through reasonable methods can significantly reduce the damage caused by secondary disasters such as tsunamis. Recently, machine learning (ML) approaches have been employed to predict laboratory earthquakes using stick-slip dynamics data obtained from sheared granular fault experiments. Here, we adopt the combined finite-discrete element method (FDEM) to simulate a two-dimensional sheared granular fault system, from which abundant fault dynamics data (i.e., displacement and velocity) during stick-slip cycles are collected at 2203 "sensor" points densely placed along and inside the gouge. We use the simulated data to train LightGBM (Light Gradient Boosting Machine) models and predict the gouge-plate friction coefficient (an indicator of stick-slips and the friction state of the fault). To optimize the data, we build the importance ranking of input features and select those with top feature importance for prediction. We then use the optimized data and their statistics for training and finally reach a LightGBM model with an acceptable prediction accuracy (R2 = 0.94). The SHAP (SHapley Additive exPlanations) values of input features are also calculated to quantify their contributions to the prediction. We show that when sufficient fault dynamics data are available, LightGBM, together with the SHAP value approach, is capable of accurately predicting the friction state of laboratory faults and can also help pinpoint the most critical input features for laboratory earthquake prediction. This work may shed light on natural earthquake prediction and open new possibilities to explore useful earthquake precursors using artificial intelligence.
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
第一 ; 通讯
WOS研究方向
Engineering ; Oceanography
WOS类目
Engineering, Marine ; Engineering, Ocean ; Oceanography
WOS记录号
WOS:001169960100001
出版者
来源库
Web of Science
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/789014
专题理学院_地球与空间科学系
南方科技大学
作者单位
1.Southern Univ Sci & Technol, Dept Earth & Space Sci, Shenzhen 518055, Peoples R China
2.Southern Univ Sci & Technol, Guangdong Prov Key Lab Geophys High Resolut Imagin, Shenzhen 518055, Peoples R China
3.Sun Yat Sen Univ, Sch Civil Engn, Zhuhai 519082, Peoples R China
第一作者单位地球与空间科学系
通讯作者单位地球与空间科学系;  南方科技大学
第一作者的第一单位地球与空间科学系
推荐引用方式
GB/T 7714
Huang, Weihan,Gao, Ke,Feng, Yu. Predicting Stick-Slips in Sheared Granular Fault Using Machine Learning Optimized Dense Fault Dynamics Data[J]. JOURNAL OF MARINE SCIENCE AND ENGINEERING,2024,12(2).
APA
Huang, Weihan,Gao, Ke,&Feng, Yu.(2024).Predicting Stick-Slips in Sheared Granular Fault Using Machine Learning Optimized Dense Fault Dynamics Data.JOURNAL OF MARINE SCIENCE AND ENGINEERING,12(2).
MLA
Huang, Weihan,et al."Predicting Stick-Slips in Sheared Granular Fault Using Machine Learning Optimized Dense Fault Dynamics Data".JOURNAL OF MARINE SCIENCE AND ENGINEERING 12.2(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Huang, Weihan]的文章
[Gao, Ke]的文章
[Feng, Yu]的文章
百度学术
百度学术中相似的文章
[Huang, Weihan]的文章
[Gao, Ke]的文章
[Feng, Yu]的文章
必应学术
必应学术中相似的文章
[Huang, Weihan]的文章
[Gao, Ke]的文章
[Feng, Yu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。