题名 | Predicting Stick-Slips in Sheared Granular Fault Using Machine Learning Optimized Dense Fault Dynamics Data |
作者 | |
通讯作者 | Gao, Ke |
发表日期 | 2024-02-01
|
DOI | |
发表期刊 | |
EISSN | 2077-1312
|
卷号 | 12期号:2 |
摘要 | Predicting earthquakes through reasonable methods can significantly reduce the damage caused by secondary disasters such as tsunamis. Recently, machine learning (ML) approaches have been employed to predict laboratory earthquakes using stick-slip dynamics data obtained from sheared granular fault experiments. Here, we adopt the combined finite-discrete element method (FDEM) to simulate a two-dimensional sheared granular fault system, from which abundant fault dynamics data (i.e., displacement and velocity) during stick-slip cycles are collected at 2203 "sensor" points densely placed along and inside the gouge. We use the simulated data to train LightGBM (Light Gradient Boosting Machine) models and predict the gouge-plate friction coefficient (an indicator of stick-slips and the friction state of the fault). To optimize the data, we build the importance ranking of input features and select those with top feature importance for prediction. We then use the optimized data and their statistics for training and finally reach a LightGBM model with an acceptable prediction accuracy (R2 = 0.94). The SHAP (SHapley Additive exPlanations) values of input features are also calculated to quantify their contributions to the prediction. We show that when sufficient fault dynamics data are available, LightGBM, together with the SHAP value approach, is capable of accurately predicting the friction state of laboratory faults and can also help pinpoint the most critical input features for laboratory earthquake prediction. This work may shed light on natural earthquake prediction and open new possibilities to explore useful earthquake precursors using artificial intelligence. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
WOS研究方向 | Engineering
; Oceanography
|
WOS类目 | Engineering, Marine
; Engineering, Ocean
; Oceanography
|
WOS记录号 | WOS:001169960100001
|
出版者 | |
来源库 | Web of Science
|
引用统计 | |
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/789014 |
专题 | 理学院_地球与空间科学系 南方科技大学 |
作者单位 | 1.Southern Univ Sci & Technol, Dept Earth & Space Sci, Shenzhen 518055, Peoples R China 2.Southern Univ Sci & Technol, Guangdong Prov Key Lab Geophys High Resolut Imagin, Shenzhen 518055, Peoples R China 3.Sun Yat Sen Univ, Sch Civil Engn, Zhuhai 519082, Peoples R China |
第一作者单位 | 地球与空间科学系 |
通讯作者单位 | 地球与空间科学系; 南方科技大学 |
第一作者的第一单位 | 地球与空间科学系 |
推荐引用方式 GB/T 7714 |
Huang, Weihan,Gao, Ke,Feng, Yu. Predicting Stick-Slips in Sheared Granular Fault Using Machine Learning Optimized Dense Fault Dynamics Data[J]. JOURNAL OF MARINE SCIENCE AND ENGINEERING,2024,12(2).
|
APA |
Huang, Weihan,Gao, Ke,&Feng, Yu.(2024).Predicting Stick-Slips in Sheared Granular Fault Using Machine Learning Optimized Dense Fault Dynamics Data.JOURNAL OF MARINE SCIENCE AND ENGINEERING,12(2).
|
MLA |
Huang, Weihan,et al."Predicting Stick-Slips in Sheared Granular Fault Using Machine Learning Optimized Dense Fault Dynamics Data".JOURNAL OF MARINE SCIENCE AND ENGINEERING 12.2(2024).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论