中文版 | English
题名

ENERGY DIMINISHING IMPLICIT-EXPLICIT RUNGE-KUTTA METHODS FOR GRADIENT FLOWS

作者
通讯作者Yang, Jiang
发表日期
2024-02-01
DOI
发表期刊
ISSN
0025-5718
EISSN
1088-6842
摘要
This study focuses on the development and analysis of a group of high -order implicit-explicit (IMEX) Runge-Kutta (RK) methods that are suitable for discretizing gradient flows with nonlinearity that is Lipschitz continuous. We demonstrate that these IMEX-RK methods can preserve the original energy dissipation property without any restrictions on the time -step size, thanks to a stabilization technique. The stabilization constants are solely dependent on the minimal eigenvalues that result from the Butcher tables of the IMEX-RKs. Furthermore, we establish a simple framework that can determine whether an IMEX-RK scheme is capable of preserving the original energy dissipation property or not. We also present a heuristic convergence analysis based on the truncation errors. This is the first research to prove that a linear high -order single-step scheme can ensure the original energy stability unconditionally for general gradient flows. Additionally, we provide several high -order IMEX-RK schemes that satisfy the established framework. Notably, we discovered a new four-stage third-order IMEX-RK scheme that reduces energy. Finally, we provide numerical examples to demonstrate the stability and accuracy properties of the proposed methods.
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
通讯
资助项目
National Science Foundation of China[NSFC-12271240] ; Hong Kong RGC Joint Research Scheme[NSFC/RGC 11961160718] ; Guangdong Provincial Key Laboratory of Computational Science and Material Design[2019B030301001] ; Shenzhen Natural Science Fund[RCJC20210609103819018] ; Guangdong Provincial Key Laboratory of Interdisciplinary Research and Application for Data Science[UIC 2022B1212010006]
WOS研究方向
Mathematics
WOS类目
Mathematics, Applied
WOS记录号
WOS:001176966000001
出版者
ESI学科分类
MATHEMATICS
来源库
Web of Science
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/789020
专题理学院_数学系
南方科技大学
作者单位
1.Univ British Columbia, Dept Math, Vancouver, BC, Canada
2.BNU HKBU United Int Coll, Zhuhai 519087, Peoples R China
3.Guangdong Prov Key Lab Interdisciplinary Res & App, Shenzhen, Peoples R China
4.Southern Univ Sci & Technol, SUSTech Int Ctr Math, Dept Math, Shenzhen 518055, Peoples R China
5.Southern Univ Sci & Technol, Natl Ctr Appl Math Shenzhen NCAMS, Shenzhen 518055, Peoples R China
通讯作者单位数学系;  南方科技大学
推荐引用方式
GB/T 7714
Fu, Zhaohui,Tang, Tao,Yang, Jiang. ENERGY DIMINISHING IMPLICIT-EXPLICIT RUNGE-KUTTA METHODS FOR GRADIENT FLOWS[J]. MATHEMATICS OF COMPUTATION,2024.
APA
Fu, Zhaohui,Tang, Tao,&Yang, Jiang.(2024).ENERGY DIMINISHING IMPLICIT-EXPLICIT RUNGE-KUTTA METHODS FOR GRADIENT FLOWS.MATHEMATICS OF COMPUTATION.
MLA
Fu, Zhaohui,et al."ENERGY DIMINISHING IMPLICIT-EXPLICIT RUNGE-KUTTA METHODS FOR GRADIENT FLOWS".MATHEMATICS OF COMPUTATION (2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Fu, Zhaohui]的文章
[Tang, Tao]的文章
[Yang, Jiang]的文章
百度学术
百度学术中相似的文章
[Fu, Zhaohui]的文章
[Tang, Tao]的文章
[Yang, Jiang]的文章
必应学术
必应学术中相似的文章
[Fu, Zhaohui]的文章
[Tang, Tao]的文章
[Yang, Jiang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。