题名 | ENERGY DIMINISHING IMPLICIT-EXPLICIT RUNGE-KUTTA METHODS FOR GRADIENT FLOWS |
作者 | |
通讯作者 | Yang, Jiang |
发表日期 | 2024-02-01
|
DOI | |
发表期刊 | |
ISSN | 0025-5718
|
EISSN | 1088-6842
|
摘要 | This study focuses on the development and analysis of a group of high -order implicit-explicit (IMEX) Runge-Kutta (RK) methods that are suitable for discretizing gradient flows with nonlinearity that is Lipschitz continuous. We demonstrate that these IMEX-RK methods can preserve the original energy dissipation property without any restrictions on the time -step size, thanks to a stabilization technique. The stabilization constants are solely dependent on the minimal eigenvalues that result from the Butcher tables of the IMEX-RKs. Furthermore, we establish a simple framework that can determine whether an IMEX-RK scheme is capable of preserving the original energy dissipation property or not. We also present a heuristic convergence analysis based on the truncation errors. This is the first research to prove that a linear high -order single-step scheme can ensure the original energy stability unconditionally for general gradient flows. Additionally, we provide several high -order IMEX-RK schemes that satisfy the established framework. Notably, we discovered a new four-stage third-order IMEX-RK scheme that reduces energy. Finally, we provide numerical examples to demonstrate the stability and accuracy properties of the proposed methods. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 通讯
|
资助项目 | National Science Foundation of China[NSFC-12271240]
; Hong Kong RGC Joint Research Scheme[NSFC/RGC 11961160718]
; Guangdong Provincial Key Laboratory of Computational Science and Material Design[2019B030301001]
; Shenzhen Natural Science Fund[RCJC20210609103819018]
; Guangdong Provincial Key Laboratory of Interdisciplinary Research and Application for Data Science[UIC 2022B1212010006]
|
WOS研究方向 | Mathematics
|
WOS类目 | Mathematics, Applied
|
WOS记录号 | WOS:001176966000001
|
出版者 | |
ESI学科分类 | MATHEMATICS
|
来源库 | Web of Science
|
引用统计 | |
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/789020 |
专题 | 理学院_数学系 南方科技大学 |
作者单位 | 1.Univ British Columbia, Dept Math, Vancouver, BC, Canada 2.BNU HKBU United Int Coll, Zhuhai 519087, Peoples R China 3.Guangdong Prov Key Lab Interdisciplinary Res & App, Shenzhen, Peoples R China 4.Southern Univ Sci & Technol, SUSTech Int Ctr Math, Dept Math, Shenzhen 518055, Peoples R China 5.Southern Univ Sci & Technol, Natl Ctr Appl Math Shenzhen NCAMS, Shenzhen 518055, Peoples R China |
通讯作者单位 | 数学系; 南方科技大学 |
推荐引用方式 GB/T 7714 |
Fu, Zhaohui,Tang, Tao,Yang, Jiang. ENERGY DIMINISHING IMPLICIT-EXPLICIT RUNGE-KUTTA METHODS FOR GRADIENT FLOWS[J]. MATHEMATICS OF COMPUTATION,2024.
|
APA |
Fu, Zhaohui,Tang, Tao,&Yang, Jiang.(2024).ENERGY DIMINISHING IMPLICIT-EXPLICIT RUNGE-KUTTA METHODS FOR GRADIENT FLOWS.MATHEMATICS OF COMPUTATION.
|
MLA |
Fu, Zhaohui,et al."ENERGY DIMINISHING IMPLICIT-EXPLICIT RUNGE-KUTTA METHODS FOR GRADIENT FLOWS".MATHEMATICS OF COMPUTATION (2024).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论