中文版 | English
题名

Geometrizing the partial entanglement entropy: from PEE threads to bit threads

作者
通讯作者Wen, Qiang
发表日期
2024-02-23
DOI
发表期刊
ISSN
1029-8479
期号2
摘要
We give a scheme to geometrize the partial entanglement entropy (PEE) for holographic CFT in the context of AdS/CFT. More explicitly, given a point x we geometrize the two-point PEEs between x and any other points in terms of the bulk geodesics connecting these two points. We refer to these geodesics as the PEE threads, which can be naturally regarded as the integral curves of a divergenceless vector field Vx mu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {V}_{\textbf{x}}<^>{\mu } $$\end{document}, which we call PEE thread flow. The norm of Vx mu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {V}_{\textbf{x}}<^>{\mu } $$\end{document} that characterizes the density of the PEE threads can be determined by some physical requirements of the PEE. We show that, for any static interval or spherical region A, a unique bit thread configuration can be generated from the PEE thread configuration determined by the state. Hence, the non-intrinsic bit threads are emergent from the intrinsic PEE threads. For static disconnected intervals, the vector fields describing a divergenceless flow is no longer suitable to reproduce the RT formula. We weight a PEE thread with the number of times it intersects with any homologous surface. Instead, the RT formula is perfectly reformulated by the minimization of the summation of PEE threads with all possible assignment of weights.
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
其他
资助项目
National Natural Science Foundation of China[12247161] ; NSFC Research Fund for International Scientists[12250410250] ; China Postdoctoral Science Foundation[2022TQ0140]
WOS研究方向
Physics
WOS类目
Physics, Particles & Fields
WOS记录号
WOS:001169807700001
出版者
ESI学科分类
PHYSICS
来源库
Web of Science
引用统计
被引频次[WOS]:6
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/789040
专题理学院_物理系
作者单位
1.Univ Sci & Technol China, Interdisciplinary Ctr Theoret Study, 96 Jinzai Ave, Hefei 230026, Anhui, Peoples R China
2.Peng Huanwu Ctr Fundamental Theory, 96 Jinzai Ave, Hefei 230026, Anhui, Peoples R China
3.Southern Univ Sci & Technol, Dept Phys, 1088 Xueyuan Ave, Shenzhen 518055, Peoples R China
4.Southeast Univ, Shing Tung Yau Ctr, 2 Sipailou, Nanjing 210096, Peoples R China
5.Southeast Univ, Sch Phys, 2 Sipailou, Nanjing, Peoples R China
推荐引用方式
GB/T 7714
Lin, Jiong,Lu, Yizhou,Wen, Qiang. Geometrizing the partial entanglement entropy: from PEE threads to bit threads[J]. JOURNAL OF HIGH ENERGY PHYSICS,2024(2).
APA
Lin, Jiong,Lu, Yizhou,&Wen, Qiang.(2024).Geometrizing the partial entanglement entropy: from PEE threads to bit threads.JOURNAL OF HIGH ENERGY PHYSICS(2).
MLA
Lin, Jiong,et al."Geometrizing the partial entanglement entropy: from PEE threads to bit threads".JOURNAL OF HIGH ENERGY PHYSICS .2(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Lin, Jiong]的文章
[Lu, Yizhou]的文章
[Wen, Qiang]的文章
百度学术
百度学术中相似的文章
[Lin, Jiong]的文章
[Lu, Yizhou]的文章
[Wen, Qiang]的文章
必应学术
必应学术中相似的文章
[Lin, Jiong]的文章
[Lu, Yizhou]的文章
[Wen, Qiang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。