题名 | Geometrizing the partial entanglement entropy: from PEE threads to bit threads |
作者 | |
通讯作者 | Wen, Qiang |
发表日期 | 2024-02-23
|
DOI | |
发表期刊 | |
ISSN | 1029-8479
|
期号 | 2 |
摘要 | We give a scheme to geometrize the partial entanglement entropy (PEE) for holographic CFT in the context of AdS/CFT. More explicitly, given a point x we geometrize the two-point PEEs between x and any other points in terms of the bulk geodesics connecting these two points. We refer to these geodesics as the PEE threads, which can be naturally regarded as the integral curves of a divergenceless vector field Vx mu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {V}_{\textbf{x}}<^>{\mu } $$\end{document}, which we call PEE thread flow. The norm of Vx mu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {V}_{\textbf{x}}<^>{\mu } $$\end{document} that characterizes the density of the PEE threads can be determined by some physical requirements of the PEE. We show that, for any static interval or spherical region A, a unique bit thread configuration can be generated from the PEE thread configuration determined by the state. Hence, the non-intrinsic bit threads are emergent from the intrinsic PEE threads. For static disconnected intervals, the vector fields describing a divergenceless flow is no longer suitable to reproduce the RT formula. We weight a PEE thread with the number of times it intersects with any homologous surface. Instead, the RT formula is perfectly reformulated by the minimization of the summation of PEE threads with all possible assignment of weights. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 其他
|
资助项目 | National Natural Science Foundation of China[12247161]
; NSFC Research Fund for International Scientists[12250410250]
; China Postdoctoral Science Foundation[2022TQ0140]
|
WOS研究方向 | Physics
|
WOS类目 | Physics, Particles & Fields
|
WOS记录号 | WOS:001169807700001
|
出版者 | |
ESI学科分类 | PHYSICS
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:6
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/789040 |
专题 | 理学院_物理系 |
作者单位 | 1.Univ Sci & Technol China, Interdisciplinary Ctr Theoret Study, 96 Jinzai Ave, Hefei 230026, Anhui, Peoples R China 2.Peng Huanwu Ctr Fundamental Theory, 96 Jinzai Ave, Hefei 230026, Anhui, Peoples R China 3.Southern Univ Sci & Technol, Dept Phys, 1088 Xueyuan Ave, Shenzhen 518055, Peoples R China 4.Southeast Univ, Shing Tung Yau Ctr, 2 Sipailou, Nanjing 210096, Peoples R China 5.Southeast Univ, Sch Phys, 2 Sipailou, Nanjing, Peoples R China |
推荐引用方式 GB/T 7714 |
Lin, Jiong,Lu, Yizhou,Wen, Qiang. Geometrizing the partial entanglement entropy: from PEE threads to bit threads[J]. JOURNAL OF HIGH ENERGY PHYSICS,2024(2).
|
APA |
Lin, Jiong,Lu, Yizhou,&Wen, Qiang.(2024).Geometrizing the partial entanglement entropy: from PEE threads to bit threads.JOURNAL OF HIGH ENERGY PHYSICS(2).
|
MLA |
Lin, Jiong,et al."Geometrizing the partial entanglement entropy: from PEE threads to bit threads".JOURNAL OF HIGH ENERGY PHYSICS .2(2024).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论