中文版 | English
题名

Fast Initial Model Design for Electrical Resistivity Inversion by Using Broad Learning Framework

作者
通讯作者Han, Peng
发表日期
2024-02-01
DOI
发表期刊
EISSN
2075-163X
卷号14期号:2
摘要
The electrical resistivity method is widely used in near-surface mineral exploration. At present, the deterministic algorithm is commonly employed in three-dimensional (3-D) electrical resistivity inversion to obtain subsurface electrical structures. However, the accuracy and efficiency of deterministic inversion rely on the initial model. In practice, obtaining an initial model that approximates the true subsurface electrical structures remains challenging. To address this issue, we introduce a broad learning (BL) network to determine the initial model and utilize the limited memory quasi-Newton (L-BFGS) algorithm to conduct the 3-D electrical resistivity inversion task. The powerful mapping capability of the BL network enables one to find the model that elucidates the actual observed data. The single-layer BL network makes it efficient and easy to realize, leading to much faster network training compared to that using the deep learning network. Both the synthetic and field experiments suggest that the BL framework could effectively obtain the initial model based on observed data. Furthermore, in comparison to using a homogeneous medium as the initial model, the L-BFGS inversion with the BL framework-designed initial model improves the inversion accuracy of subsurface electrical structures and expedites the convergence speed of the iteration. This study provides an effective approach for fast initial model design in a data-driven manner when the prior information is unavailable. The proposed method can be useful in high-precision imaging of near-surface mineral electrical structures.
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
第一 ; 通讯
WOS研究方向
Geochemistry & Geophysics ; Mineralogy ; Mining & Mineral Processing
WOS类目
Geochemistry & Geophysics ; Mineralogy ; Mining & Mineral Processing
WOS记录号
WOS:001172500900001
出版者
来源库
Web of Science
引用统计
被引频次[WOS]:2
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/789049
专题理学院_地球与空间科学系
南方科技大学
作者单位
1.Southern Univ Sci & Technol, Dept Earth & Space Sci, Shenzhen 518055, Peoples R China
2.Southern Univ Sci & Technol, Guangdong Prov Key Lab Geophys High Resolut Imagin, Shenzhen 518055, Peoples R China
3.Chengdu Univ Informat Technol, Sch Atmospher Sci, Plateau Atmosphere & Environm Key Lab Sichuan Prov, Chengdu 610225, Peoples R China
4.Guangdong Prov Geophys Prospecting Team, Guangzhou 510080, Peoples R China
第一作者单位地球与空间科学系
通讯作者单位地球与空间科学系;  南方科技大学
第一作者的第一单位地球与空间科学系
推荐引用方式
GB/T 7714
Tao, Tao,Han, Peng,Yang, Xiao-Hui,et al. Fast Initial Model Design for Electrical Resistivity Inversion by Using Broad Learning Framework[J]. MINERALS,2024,14(2).
APA
Tao, Tao.,Han, Peng.,Yang, Xiao-Hui.,Zu, Qiang.,Hu, Kaiyan.,...&He, Zhanxiang.(2024).Fast Initial Model Design for Electrical Resistivity Inversion by Using Broad Learning Framework.MINERALS,14(2).
MLA
Tao, Tao,et al."Fast Initial Model Design for Electrical Resistivity Inversion by Using Broad Learning Framework".MINERALS 14.2(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Tao, Tao]的文章
[Han, Peng]的文章
[Yang, Xiao-Hui]的文章
百度学术
百度学术中相似的文章
[Tao, Tao]的文章
[Han, Peng]的文章
[Yang, Xiao-Hui]的文章
必应学术
必应学术中相似的文章
[Tao, Tao]的文章
[Han, Peng]的文章
[Yang, Xiao-Hui]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。