中文版 | English
题名

Charge-Optimized Electrostatic Interaction Atom-Centered Neural Network Algorithm

作者
通讯作者Li, Lei
发表日期
2024-02-21
DOI
发表期刊
ISSN
1549-9618
EISSN
1549-9626
卷号20期号:5
摘要
Machine-learning algorithms have been proposed to capture electrostatic interactions by using effective partial charges. These algorithms often rely on a pretrained model for partial charge prediction using density functional theory-calculated partial charges as references, which introduces complexity to the force field model. The accuracy of the trained model also depends on the reliability of charge partition methods, which can be dependent on the specific system and methodology employed. In this study, we propose an atom-centered neural network (ANN) algorithm that eliminates the need for reference charges. Our algorithm requires only a single NN model for each element to obtain both atomic energy and charges. These atomic charges are then employed to compute electrostatic energies using the Ewald summation algorithm. Subsequently, the force field model is trained on total energy and forces, with the inclusion of electrostatic energy. To evaluate the performance of our algorithm, we conducted tests on three benchmark systems, including a Ge slab with an O adatom system, a TiO2 crystalline system, and a Pd-O nanoparticle system. Our results demonstrate reasonably accurate predictions of partial charges and electrostatic interactions. This algorithm provides a self-consistent charge prediction strategy and possibilities for robust and reliable modeling of electrostatic interactions in machine-learning potentials.
相关链接[来源记录]
收录类别
语种
英语
学校署名
第一 ; 通讯
资助项目
Division of Chemistry[92270103] ; Training Program of the Major Research Plan of the National Natural Science Foundation of China[JCYJ20210324115809026] ; Shenzhen fundamental research funding[ZDSYS20210709112802010] ; Center for Computational Science and Engineering of Southern University of Science and Technology[CHE-2102317] ; NSF[F-1841]
WOS研究方向
Chemistry ; Physics
WOS类目
Chemistry, Physical ; Physics, Atomic, Molecular & Chemical
WOS记录号
WOS:001168280400001
出版者
来源库
Web of Science
引用统计
被引频次[WOS]:1
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/789058
专题工学院_材料科学与工程系
作者单位
1.Southern Univ Sci & Technol, Dept Mat Sci & Engn, Shenzhen Key Lab Micro Nanoporous Funct Mat SKLPM, Shenzhen 518055, Peoples R China
2.City Univ Hong Kong, Dept Mat Sci & Engn, Kowloon, Hong Kong, Peoples R China
3.Univ Texas Austin, Dept Chem, Austin, TX 78712 USA
4.Univ Texas Austin, Inst Computat Engn & Sci, Austin, TX 78712 USA
第一作者单位材料科学与工程系
通讯作者单位材料科学与工程系
第一作者的第一单位材料科学与工程系
推荐引用方式
GB/T 7714
Song, Zichen,Han, Jian,Henkelman, Graeme,et al. Charge-Optimized Electrostatic Interaction Atom-Centered Neural Network Algorithm[J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION,2024,20(5).
APA
Song, Zichen,Han, Jian,Henkelman, Graeme,&Li, Lei.(2024).Charge-Optimized Electrostatic Interaction Atom-Centered Neural Network Algorithm.JOURNAL OF CHEMICAL THEORY AND COMPUTATION,20(5).
MLA
Song, Zichen,et al."Charge-Optimized Electrostatic Interaction Atom-Centered Neural Network Algorithm".JOURNAL OF CHEMICAL THEORY AND COMPUTATION 20.5(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Song, Zichen]的文章
[Han, Jian]的文章
[Henkelman, Graeme]的文章
百度学术
百度学术中相似的文章
[Song, Zichen]的文章
[Han, Jian]的文章
[Henkelman, Graeme]的文章
必应学术
必应学术中相似的文章
[Song, Zichen]的文章
[Han, Jian]的文章
[Henkelman, Graeme]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。