题名 | Charge-Optimized Electrostatic Interaction Atom-Centered Neural Network Algorithm |
作者 | |
通讯作者 | Li, Lei |
发表日期 | 2024-02-21
|
DOI | |
发表期刊 | |
ISSN | 1549-9618
|
EISSN | 1549-9626
|
卷号 | 20期号:5 |
摘要 | Machine-learning algorithms have been proposed to capture electrostatic interactions by using effective partial charges. These algorithms often rely on a pretrained model for partial charge prediction using density functional theory-calculated partial charges as references, which introduces complexity to the force field model. The accuracy of the trained model also depends on the reliability of charge partition methods, which can be dependent on the specific system and methodology employed. In this study, we propose an atom-centered neural network (ANN) algorithm that eliminates the need for reference charges. Our algorithm requires only a single NN model for each element to obtain both atomic energy and charges. These atomic charges are then employed to compute electrostatic energies using the Ewald summation algorithm. Subsequently, the force field model is trained on total energy and forces, with the inclusion of electrostatic energy. To evaluate the performance of our algorithm, we conducted tests on three benchmark systems, including a Ge slab with an O adatom system, a TiO2 crystalline system, and a Pd-O nanoparticle system. Our results demonstrate reasonably accurate predictions of partial charges and electrostatic interactions. This algorithm provides a self-consistent charge prediction strategy and possibilities for robust and reliable modeling of electrostatic interactions in machine-learning potentials. |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | Division of Chemistry[92270103]
; Training Program of the Major Research Plan of the National Natural Science Foundation of China[JCYJ20210324115809026]
; Shenzhen fundamental research funding[ZDSYS20210709112802010]
; Center for Computational Science and Engineering of Southern University of Science and Technology[CHE-2102317]
; NSF[F-1841]
|
WOS研究方向 | Chemistry
; Physics
|
WOS类目 | Chemistry, Physical
; Physics, Atomic, Molecular & Chemical
|
WOS记录号 | WOS:001168280400001
|
出版者 | |
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:1
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/789058 |
专题 | 工学院_材料科学与工程系 |
作者单位 | 1.Southern Univ Sci & Technol, Dept Mat Sci & Engn, Shenzhen Key Lab Micro Nanoporous Funct Mat SKLPM, Shenzhen 518055, Peoples R China 2.City Univ Hong Kong, Dept Mat Sci & Engn, Kowloon, Hong Kong, Peoples R China 3.Univ Texas Austin, Dept Chem, Austin, TX 78712 USA 4.Univ Texas Austin, Inst Computat Engn & Sci, Austin, TX 78712 USA |
第一作者单位 | 材料科学与工程系 |
通讯作者单位 | 材料科学与工程系 |
第一作者的第一单位 | 材料科学与工程系 |
推荐引用方式 GB/T 7714 |
Song, Zichen,Han, Jian,Henkelman, Graeme,et al. Charge-Optimized Electrostatic Interaction Atom-Centered Neural Network Algorithm[J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION,2024,20(5).
|
APA |
Song, Zichen,Han, Jian,Henkelman, Graeme,&Li, Lei.(2024).Charge-Optimized Electrostatic Interaction Atom-Centered Neural Network Algorithm.JOURNAL OF CHEMICAL THEORY AND COMPUTATION,20(5).
|
MLA |
Song, Zichen,et al."Charge-Optimized Electrostatic Interaction Atom-Centered Neural Network Algorithm".JOURNAL OF CHEMICAL THEORY AND COMPUTATION 20.5(2024).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论