中文版 | English
题名

DeepLocRNA: an interpretable deep learning model for predicting RNA subcellular localization with domain-specific transfer-learning

作者
通讯作者Cheng, Lixin; Winther, Ole
发表日期
2024-02-01
DOI
发表期刊
ISSN
1367-4803
EISSN
1367-4811
卷号40期号:2
摘要
["Motivation Accurate prediction of RNA subcellular localization plays an important role in understanding cellular processes and functions. Although post-transcriptional processes are governed by trans-acting RNA binding proteins (RBPs) through interaction with cis-regulatory RNA motifs, current methods do not incorporate RBP-binding information.Results In this article, we propose DeepLocRNA, an interpretable deep-learning model that leverages a pre-trained multi-task RBP-binding prediction model to predict the subcellular localization of RNA molecules via fine-tuning. We constructed DeepLocRNA using a comprehensive dataset with variant RNA types and evaluated it on the held-out dataset. Our model achieved state-of-the-art performance in predicting RNA subcellular localization in mRNA and miRNA. It has also demonstrated great generalization capabilities, performing well on both human and mouse RNA. Additionally, a motif analysis was performed to enhance the interpretability of the model, highlighting signal factors that contributed to the predictions. The proposed model provides general and powerful prediction abilities for different RNA types and species, offering valuable insights into the localization patterns of RNA molecules and contributing to our understanding of cellular processes at the molecular level. A user-friendly web server is available at: https://biolib.com/KU/DeepLocRNA/.","Graphical Abstract"]
相关链接[来源记录]
收录类别
语种
英语
学校署名
通讯
资助项目
Novo Nordisk Fonden[NNF20OC0062606] ; Danish National Research Foundation [the Pioneer Centre for AI][P1]
WOS研究方向
Biochemistry & Molecular Biology ; Biotechnology & Applied Microbiology ; Computer Science ; Mathematical & Computational Biology ; Mathematics
WOS类目
Biochemical Research Methods ; Biotechnology & Applied Microbiology ; Computer Science, Interdisciplinary Applications ; Mathematical & Computational Biology ; Statistics & Probability
WOS记录号
WOS:001166949000007
出版者
ESI学科分类
BIOLOGY & BIOCHEMISTRY
来源库
Web of Science
引用统计
被引频次[WOS]:4
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/789061
专题南方科技大学第一附属医院
作者单位
1.Univ Copenhagen, Bioinformat Ctr, Dept Biol, DK-2100 Copenhagen O, Denmark
2.Helmholtz Ctr Munich, Computat Hlth Ctr, D-85764 Neuherberg, Germany
3.Southern Univ Sci & Technol, Jinan Univ, Shenzhen Peoples Hosp, Affiliated Hosp 1,Clin Med Coll 2, Shenzhen 518020, Peoples R China
4.Copenhagen Univ Hosp, Ctr Genom Med, Rigshosp, DK-2100 Copenhagen, Denmark
5.Tech Univ Denmark, Dept Appl Math & Comp Sci, Sect Cognit Syst, DK-2800 Lyngby, Denmark
通讯作者单位南方科技大学第一附属医院
推荐引用方式
GB/T 7714
Wang, Jun,Horlacher, Marc,Cheng, Lixin,et al. DeepLocRNA: an interpretable deep learning model for predicting RNA subcellular localization with domain-specific transfer-learning[J]. BIOINFORMATICS,2024,40(2).
APA
Wang, Jun,Horlacher, Marc,Cheng, Lixin,&Winther, Ole.(2024).DeepLocRNA: an interpretable deep learning model for predicting RNA subcellular localization with domain-specific transfer-learning.BIOINFORMATICS,40(2).
MLA
Wang, Jun,et al."DeepLocRNA: an interpretable deep learning model for predicting RNA subcellular localization with domain-specific transfer-learning".BIOINFORMATICS 40.2(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wang, Jun]的文章
[Horlacher, Marc]的文章
[Cheng, Lixin]的文章
百度学术
百度学术中相似的文章
[Wang, Jun]的文章
[Horlacher, Marc]的文章
[Cheng, Lixin]的文章
必应学术
必应学术中相似的文章
[Wang, Jun]的文章
[Horlacher, Marc]的文章
[Cheng, Lixin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。