题名 | DeepLocRNA: an interpretable deep learning model for predicting RNA subcellular localization with domain-specific transfer-learning |
作者 | |
通讯作者 | Cheng, Lixin; Winther, Ole |
发表日期 | 2024-02-01
|
DOI | |
发表期刊 | |
ISSN | 1367-4803
|
EISSN | 1367-4811
|
卷号 | 40期号:2 |
摘要 | ["Motivation Accurate prediction of RNA subcellular localization plays an important role in understanding cellular processes and functions. Although post-transcriptional processes are governed by trans-acting RNA binding proteins (RBPs) through interaction with cis-regulatory RNA motifs, current methods do not incorporate RBP-binding information.Results In this article, we propose DeepLocRNA, an interpretable deep-learning model that leverages a pre-trained multi-task RBP-binding prediction model to predict the subcellular localization of RNA molecules via fine-tuning. We constructed DeepLocRNA using a comprehensive dataset with variant RNA types and evaluated it on the held-out dataset. Our model achieved state-of-the-art performance in predicting RNA subcellular localization in mRNA and miRNA. It has also demonstrated great generalization capabilities, performing well on both human and mouse RNA. Additionally, a motif analysis was performed to enhance the interpretability of the model, highlighting signal factors that contributed to the predictions. The proposed model provides general and powerful prediction abilities for different RNA types and species, offering valuable insights into the localization patterns of RNA molecules and contributing to our understanding of cellular processes at the molecular level. A user-friendly web server is available at: https://biolib.com/KU/DeepLocRNA/.","Graphical Abstract"] |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 通讯
|
资助项目 | Novo Nordisk Fonden[NNF20OC0062606]
; Danish National Research Foundation [the Pioneer Centre for AI][P1]
|
WOS研究方向 | Biochemistry & Molecular Biology
; Biotechnology & Applied Microbiology
; Computer Science
; Mathematical & Computational Biology
; Mathematics
|
WOS类目 | Biochemical Research Methods
; Biotechnology & Applied Microbiology
; Computer Science, Interdisciplinary Applications
; Mathematical & Computational Biology
; Statistics & Probability
|
WOS记录号 | WOS:001166949000007
|
出版者 | |
ESI学科分类 | BIOLOGY & BIOCHEMISTRY
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:4
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/789061 |
专题 | 南方科技大学第一附属医院 |
作者单位 | 1.Univ Copenhagen, Bioinformat Ctr, Dept Biol, DK-2100 Copenhagen O, Denmark 2.Helmholtz Ctr Munich, Computat Hlth Ctr, D-85764 Neuherberg, Germany 3.Southern Univ Sci & Technol, Jinan Univ, Shenzhen Peoples Hosp, Affiliated Hosp 1,Clin Med Coll 2, Shenzhen 518020, Peoples R China 4.Copenhagen Univ Hosp, Ctr Genom Med, Rigshosp, DK-2100 Copenhagen, Denmark 5.Tech Univ Denmark, Dept Appl Math & Comp Sci, Sect Cognit Syst, DK-2800 Lyngby, Denmark |
通讯作者单位 | 南方科技大学第一附属医院 |
推荐引用方式 GB/T 7714 |
Wang, Jun,Horlacher, Marc,Cheng, Lixin,et al. DeepLocRNA: an interpretable deep learning model for predicting RNA subcellular localization with domain-specific transfer-learning[J]. BIOINFORMATICS,2024,40(2).
|
APA |
Wang, Jun,Horlacher, Marc,Cheng, Lixin,&Winther, Ole.(2024).DeepLocRNA: an interpretable deep learning model for predicting RNA subcellular localization with domain-specific transfer-learning.BIOINFORMATICS,40(2).
|
MLA |
Wang, Jun,et al."DeepLocRNA: an interpretable deep learning model for predicting RNA subcellular localization with domain-specific transfer-learning".BIOINFORMATICS 40.2(2024).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论