中文版 | English
题名

COPD stage detection: leveraging the auto-metric graph neural network with inspiratory and expiratory chest CT images

作者
通讯作者Chen, Rongchang; Kang, Yan
发表日期
2024-06-01
DOI
发表期刊
ISSN
0140-0118
EISSN
1741-0444
卷号62期号:6
摘要
Chronic obstructive pulmonary disease (COPD) is a common lung disease that can lead to restricted airflow and respiratory problems, causing a significant health, economic, and social burden. Detecting the COPD stage can provide a timely warning for prompt intervention in COPD patients. However, existing methods based on inspiratory (IN) and expiratory (EX) chest CT images are not sufficiently accurate and efficient in COPD stage detection. The lung region images are autonomously segmented from IN and EX chest CT images to extract the 1, 781 x 2 lung radiomics and 13, 824 x 2 3D CNN features. Furthermore, a strategy for concatenating and selecting features was employed in COPD stage detection based on radiomics and 3D CNN features. Finally, we combine all the radiomics, 3D CNN features, and factor risks (age, gender, and smoking history) to detect the COPD stage based on the Auto-Metric Graph Neural Network (AMGNN). The AMGNN with radiomics and 3D CNN features achieves the best performance at 89.7% of accuracy, 90.9% of precision, 89.5% of F1-score, and 95.8% of AUC compared to six classic machine learning (ML) classifiers. Our proposed approach demonstrates high accuracy in detecting the stage of COPD using both IN and EX chest CT images. This method can potentially establish an efficient diagnostic tool for patients with COPD. Additionally, we have identified radiomics and 3D CNN as more appropriate biomarkers than Parametric Response Mapping (PRM). Moreover, our findings indicate that expiration yields better results than inspiration in detecting the stage of COPD.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
WOS研究方向
Computer Science ; Engineering ; Mathematical & Computational Biology ; Medical Informatics
WOS类目
Computer Science, Interdisciplinary Applications ; Engineering, Biomedical ; Mathematical & Computational Biology ; Medical Informatics
WOS记录号
WOS:001163538100001
出版者
ESI学科分类
ENGINEERING
来源库
Web of Science
引用统计
被引频次[WOS]:1
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/789078
专题南方科技大学第一附属医院
作者单位
1.Northeastern Univ, Coll Med & Biol Informat Engn, Shenyang 110169, Peoples R China
2.Shenzhen Technol Univ, Coll Hlth Sci & Environm Engn, Shenzhen 518118, Peoples R China
3.Shenzhen Lanmage Med Technol Co Ltd, Dept Radiol, 103 Baguang Serv Ctr, Shenzhen 518119, Guangdong, Peoples R China
4.Shenzhen Univ, Sch Appl Technol, Shenzhen 518060, Peoples R China
5.Guangzhou Med Univ, Affiliated Hosp 1, Natl Ctr Resp Med, Guangzhou Inst Resp Hlth,State Key Lab Resp Dis,Na, Guangzhou 510120, Peoples R China
6.Northeast Petr Univ, Sch Elect & Informat Engn, Daqing 163318, Peoples R China
7.Jinan Univ, Southern Univ Sci & Technol, Affiliated Hosp 1, Shenzhen Peoples Hosp,Clin Med Coll,Shenzhen Inst, Shenzhen 518001, Peoples R China
8.Minist Educ, Engn Res Ctr Med Imaging & Intelligent Anal, Shenyang 110169, Peoples R China
通讯作者单位南方科技大学第一附属医院
推荐引用方式
GB/T 7714
Deng, Xingguang,Li, Wei,Yang, Yingjian,et al. COPD stage detection: leveraging the auto-metric graph neural network with inspiratory and expiratory chest CT images[J]. MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING,2024,62(6).
APA
Deng, Xingguang.,Li, Wei.,Yang, Yingjian.,Wang, Shicong.,Zeng, Nanrong.,...&Kang, Yan.(2024).COPD stage detection: leveraging the auto-metric graph neural network with inspiratory and expiratory chest CT images.MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING,62(6).
MLA
Deng, Xingguang,et al."COPD stage detection: leveraging the auto-metric graph neural network with inspiratory and expiratory chest CT images".MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING 62.6(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Deng, Xingguang]的文章
[Li, Wei]的文章
[Yang, Yingjian]的文章
百度学术
百度学术中相似的文章
[Deng, Xingguang]的文章
[Li, Wei]的文章
[Yang, Yingjian]的文章
必应学术
必应学术中相似的文章
[Deng, Xingguang]的文章
[Li, Wei]的文章
[Yang, Yingjian]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。