题名 | Conditional Matching GAN Guided Reconstruction Attack in Machine Unlearning |
作者 | |
通讯作者 | Zhang, Kaiyue |
DOI | |
发表日期 | 2023
|
会议名称 | IEEE Conference on Global Communications (IEEE GLOBECOM) - Intelligent Communications for Shared Prosperity
|
ISSN | 2334-0983
|
EISSN | 2576-6813
|
会议录名称 | |
会议日期 | DEC 04-08, 2023
|
会议地点 | null,Kuala Lumpur,MALAYSIA
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | Machine unlearning allows data owners to erase certain data and its impact from learning models for the right to be forgotten. However, privacy risks during the unlearning process have been identified. Earlier studies have used differences in model outputs before and after unlearning to conduct membership inference attacks. Nevertheless, the current attacks on machine unlearning are limited to inference and cannot reconstruct data without access to the victim's dataset. In this paper, we propose a reconstruction attack towards machine unlearning (RAU), which can reconstruct the unlearned data by exploiting the privacy leakage from the two models. To improve reconstruction quality, we propose a Conditional Matching Generative Adversarial Network (CMGAN), a novel variant of generative adversarial networks which introduces a reconstructive loss. Our work demonstrates the possible privacy leakage of current machine unlearning scenarios. Experimental results on MNIST and Fashion-MNIST show that the proposed attack achieves high label recovery accuracy and good data recovery performance. |
关键词 | |
学校署名 | 通讯
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | National Key Research and Development Program of China[2021YFB1714400]
; Guangdong Provincial Key Laboratory["2020B121201001","22H03573"]
|
WOS研究方向 | Engineering
; Telecommunications
|
WOS类目 | Engineering, Electrical & Electronic
; Telecommunications
|
WOS记录号 | WOS:001178562000008
|
来源库 | Web of Science
|
引用统计 | |
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/789133 |
专题 | 南方科技大学 |
作者单位 | 1.Univ Technol Sydney, Sydney, Australia 2.Southern Univ Sci & Technol, Shenzhen, Peoples R China 3.Univ Tokyo, Kashiwa, Japan |
第一作者单位 | 南方科技大学 |
通讯作者单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Zhang, Kaiyue,Wang, Weiqi,Fan, Zipei,et al. Conditional Matching GAN Guided Reconstruction Attack in Machine Unlearning[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2023.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论