中文版 | English
题名

Conditional Matching GAN Guided Reconstruction Attack in Machine Unlearning

作者
通讯作者Zhang, Kaiyue
DOI
发表日期
2023
会议名称
IEEE Conference on Global Communications (IEEE GLOBECOM) - Intelligent Communications for Shared Prosperity
ISSN
2334-0983
EISSN
2576-6813
会议录名称
会议日期
DEC 04-08, 2023
会议地点
null,Kuala Lumpur,MALAYSIA
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
Machine unlearning allows data owners to erase certain data and its impact from learning models for the right to be forgotten. However, privacy risks during the unlearning process have been identified. Earlier studies have used differences in model outputs before and after unlearning to conduct membership inference attacks. Nevertheless, the current attacks on machine unlearning are limited to inference and cannot reconstruct data without access to the victim's dataset. In this paper, we propose a reconstruction attack towards machine unlearning (RAU), which can reconstruct the unlearned data by exploiting the privacy leakage from the two models. To improve reconstruction quality, we propose a Conditional Matching Generative Adversarial Network (CMGAN), a novel variant of generative adversarial networks which introduces a reconstructive loss. Our work demonstrates the possible privacy leakage of current machine unlearning scenarios. Experimental results on MNIST and Fashion-MNIST show that the proposed attack achieves high label recovery accuracy and good data recovery performance.
关键词
学校署名
通讯
语种
英语
相关链接[来源记录]
收录类别
资助项目
National Key Research and Development Program of China[2021YFB1714400] ; Guangdong Provincial Key Laboratory["2020B121201001","22H03573"]
WOS研究方向
Engineering ; Telecommunications
WOS类目
Engineering, Electrical & Electronic ; Telecommunications
WOS记录号
WOS:001178562000008
来源库
Web of Science
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/789133
专题南方科技大学
作者单位
1.Univ Technol Sydney, Sydney, Australia
2.Southern Univ Sci & Technol, Shenzhen, Peoples R China
3.Univ Tokyo, Kashiwa, Japan
第一作者单位南方科技大学
通讯作者单位南方科技大学
推荐引用方式
GB/T 7714
Zhang, Kaiyue,Wang, Weiqi,Fan, Zipei,et al. Conditional Matching GAN Guided Reconstruction Attack in Machine Unlearning[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2023.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang, Kaiyue]的文章
[Wang, Weiqi]的文章
[Fan, Zipei]的文章
百度学术
百度学术中相似的文章
[Zhang, Kaiyue]的文章
[Wang, Weiqi]的文章
[Fan, Zipei]的文章
必应学术
必应学术中相似的文章
[Zhang, Kaiyue]的文章
[Wang, Weiqi]的文章
[Fan, Zipei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。