中文版 | English
题名

An Efficient Nocturnal Scenarios Beamforming Based on Multi-Modal Enhanced by Object Detection

作者
DOI
发表日期
2023-12-08
ISBN
979-8-3503-7022-5
会议录名称
会议日期
4-8 Dec. 2023
会议地点
Kuala Lumpur, Malaysia
摘要
The progress in integrated sensing and communication(ISAC) technologies has facilitated the application of sensing data for beamforming, resulting in a reduction of training overhead. Nevertheless, the diminished visibility during nocturnal scenarios poses a significant impact on beamforming performance. In this research, we proposed a machine-learning approach that relies on object detection and multimodal fusion to achieve efficient beamforming prediction by leveraging visual and positional data collected from nighttime vehicle communication scenarios. Experimental findings reveal that our developed model achieves the top-1 accuracy exceeding 60% and top-5 accuracy approaching 100%, all the while substantially mitigating the training overhead.
学校署名
其他
相关链接[IEEE记录]
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/789134
专题南方科技大学
作者单位
1.Beijing University of Posts and Telecommunications
2.Southern University of Science and Technology
推荐引用方式
GB/T 7714
Jiali Nie,Yuanhao Cui,Tiankuo Yu,et al. An Efficient Nocturnal Scenarios Beamforming Based on Multi-Modal Enhanced by Object Detection[C],2023.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Jiali Nie]的文章
[Yuanhao Cui]的文章
[Tiankuo Yu]的文章
百度学术
百度学术中相似的文章
[Jiali Nie]的文章
[Yuanhao Cui]的文章
[Tiankuo Yu]的文章
必应学术
必应学术中相似的文章
[Jiali Nie]的文章
[Yuanhao Cui]的文章
[Tiankuo Yu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。