题名 | Caching for Edge Inference at Scale: A Mean Field Multi-Agent Reinforcement Learning Approach |
作者 | |
通讯作者 | Tang, Ming |
DOI | |
发表日期 | 2023
|
会议名称 | IEEE Conference on Global Communications (IEEE GLOBECOM) - Intelligent Communications for Shared Prosperity
|
ISSN | 2334-0983
|
EISSN | 2576-6813
|
会议录名称 | |
会议日期 | DEC 04-08, 2023
|
会议地点 | null,Kuala Lumpur,MALAYSIA
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | To enable AI-empowered Internet-of-things (AIoT) applications, it is crucial to achieve real-time data inference (e.g., prediction, control) at network edge. However, resource-constrained Internet-of-things devices (IoTDs) may be incapable of accomplishing those computation-intensive and latency-sensitive inference tasks. To address this issue, it is promising to incorporate mobile edge computing (MEC) systems and let IoTDs offload their inference tasks to edge servers that have already cached the associated neural network model required for inference. In this work, we take into account the limited storage and computing capacity of edge servers and formulate a neural network model caching problem for an MEC system with edge inference, in order to maximize the inference accuracy and reduce the task delay. To handle the exponential growth of signaling overhead and the learning difficulty under huge number of widely-deployed edge servers, we propose a cooperative mean field multi-agent reinforcement learning framework and a mean field actor-critic algorithm to solve the aforementioned problem. Simulation results show that our proposed algorithm outperforms several benchmarks, especially in large-scale edge networks. |
关键词 | |
学校署名 | 第一
; 通讯
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | Guangdong Basic and Applied Basic Research Foundation[2023A1515012819]
; National Natural Science Foundation of China["62202214","62202427"]
|
WOS研究方向 | Engineering
; Telecommunications
|
WOS类目 | Engineering, Electrical & Electronic
; Telecommunications
|
WOS记录号 | WOS:001178562000055
|
来源库 | Web of Science
|
引用统计 | |
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/789138 |
专题 | 理学院_数学系 工学院_计算机科学与工程系 |
作者单位 | 1.Southern Univ Sci & Technol, Dept Math, Shenzhen, Peoples R China 2.Zhejiang Univ, Zhejiang Univ Illinois Urbana Champaign Inst, Haining, Peoples R China 3.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen, Peoples R China |
第一作者单位 | 数学系 |
通讯作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 数学系 |
推荐引用方式 GB/T 7714 |
Lu, Yanqing,Zhang, Meng,Tang, Ming. Caching for Edge Inference at Scale: A Mean Field Multi-Agent Reinforcement Learning Approach[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2023.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论