中文版 | English
题名

Caching for Edge Inference at Scale: A Mean Field Multi-Agent Reinforcement Learning Approach

作者
通讯作者Tang, Ming
DOI
发表日期
2023
会议名称
IEEE Conference on Global Communications (IEEE GLOBECOM) - Intelligent Communications for Shared Prosperity
ISSN
2334-0983
EISSN
2576-6813
会议录名称
会议日期
DEC 04-08, 2023
会议地点
null,Kuala Lumpur,MALAYSIA
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
To enable AI-empowered Internet-of-things (AIoT) applications, it is crucial to achieve real-time data inference (e.g., prediction, control) at network edge. However, resource-constrained Internet-of-things devices (IoTDs) may be incapable of accomplishing those computation-intensive and latency-sensitive inference tasks. To address this issue, it is promising to incorporate mobile edge computing (MEC) systems and let IoTDs offload their inference tasks to edge servers that have already cached the associated neural network model required for inference. In this work, we take into account the limited storage and computing capacity of edge servers and formulate a neural network model caching problem for an MEC system with edge inference, in order to maximize the inference accuracy and reduce the task delay. To handle the exponential growth of signaling overhead and the learning difficulty under huge number of widely-deployed edge servers, we propose a cooperative mean field multi-agent reinforcement learning framework and a mean field actor-critic algorithm to solve the aforementioned problem. Simulation results show that our proposed algorithm outperforms several benchmarks, especially in large-scale edge networks.
关键词
学校署名
第一 ; 通讯
语种
英语
相关链接[来源记录]
收录类别
资助项目
Guangdong Basic and Applied Basic Research Foundation[2023A1515012819] ; National Natural Science Foundation of China["62202214","62202427"]
WOS研究方向
Engineering ; Telecommunications
WOS类目
Engineering, Electrical & Electronic ; Telecommunications
WOS记录号
WOS:001178562000055
来源库
Web of Science
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/789138
专题理学院_数学系
工学院_计算机科学与工程系
作者单位
1.Southern Univ Sci & Technol, Dept Math, Shenzhen, Peoples R China
2.Zhejiang Univ, Zhejiang Univ Illinois Urbana Champaign Inst, Haining, Peoples R China
3.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen, Peoples R China
第一作者单位数学系
通讯作者单位计算机科学与工程系
第一作者的第一单位数学系
推荐引用方式
GB/T 7714
Lu, Yanqing,Zhang, Meng,Tang, Ming. Caching for Edge Inference at Scale: A Mean Field Multi-Agent Reinforcement Learning Approach[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2023.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Lu, Yanqing]的文章
[Zhang, Meng]的文章
[Tang, Ming]的文章
百度学术
百度学术中相似的文章
[Lu, Yanqing]的文章
[Zhang, Meng]的文章
[Tang, Ming]的文章
必应学术
必应学术中相似的文章
[Lu, Yanqing]的文章
[Zhang, Meng]的文章
[Tang, Ming]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。