中文版 | English
题名

3S-TSE: Efficient Three-Stage Target Speaker Extraction for Real-Time and Low-Resource Applications

作者
DOI
发表日期
2024-04-19
ISSN
1520-6149
ISBN
979-8-3503-4486-8
会议录名称
会议日期
14-19 April 2024
会议地点
Seoul, Korea, Republic of
摘要
Target speaker extraction (TSE) aims to isolate a specific voice from multiple mixed speakers relying on a registerd sample. Since voiceprint features usually vary greatly, current end-to-end neural networks require large model parameters which are computational intensive and impractical for real-time applications, espetially on resource-constrained platforms. In this paper, we address the TSE task using microphone array and introduce a novel three-stage solution that systematically decouples the process: First, a neural network is trained to estimate the direction of the target speaker. Second, with the direction determined, the Generalized Sidelobe Canceller (GSC) is used to extract the target speech. Third, an Inplace Convolutional Recurrent Neural Network (ICRN) acts as a denoising post-processor, refining the GSC output to yield the final separated speech. Our approach delivers superior performance while drastically reducing computational load, setting a new standard for efficient real-time target speaker extraction.
学校署名
其他
相关链接[IEEE记录]
收录类别
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/789149
专题工学院_电子与电气工程系
作者单位
1.College of Computer Science, Inner Mongolia University, China
2.Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China
3.Key Laboratory of Urban Land Resources Monitoring and Simulation, Ministry of Natural Resources, China
推荐引用方式
GB/T 7714
Shulin He,Jinjiang Liu,Hao Li,et al. 3S-TSE: Efficient Three-Stage Target Speaker Extraction for Real-Time and Low-Resource Applications[C],2024.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Shulin He]的文章
[Jinjiang Liu]的文章
[Hao Li]的文章
百度学术
百度学术中相似的文章
[Shulin He]的文章
[Jinjiang Liu]的文章
[Hao Li]的文章
必应学术
必应学术中相似的文章
[Shulin He]的文章
[Jinjiang Liu]的文章
[Hao Li]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。