题名 | IoT Network Intrusion Detection using Contrastive Learning with a Lightweight Autoencoder |
作者 | |
DOI | |
发表日期 | 2023-08-31
|
ISBN | 979-8-3503-1981-1
|
会议录名称 | |
会议日期 | 28-31 Aug. 2023
|
会议地点 | Portsmouth, United Kingdom
|
摘要 | The IoT has experienced rapid growth in the past decade and is now facing an alarming increase in targeted cyber attacks 1 . As these attacks become more frequent and complex, it is crucial to create robust security strategies and intrusion detection methods to shield IoT networks. A key component of network security is Intrusion Detection System (IDS), working together with other defensive tools such as firewalls, antivirus applications, and encryption methodologies. The intrusion detection system (IDS) can enhance network security and complement other protective measures like firewalls, antivirus software, and encryption techniques. |
学校署名 | 其他
|
相关链接 | [IEEE记录] |
引用统计 | |
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/789156 |
专题 | 南方科技大学 |
作者单位 | 1.The University of Hong Kong 2.Southern University of Science and Technology |
推荐引用方式 GB/T 7714 |
Xinchen Zhang,Edith C.-H. Ngai,Shuang-Hua Yang. IoT Network Intrusion Detection using Contrastive Learning with a Lightweight Autoencoder[C],2023.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论