题名 | GNN-based Neighbor Selection and Resource Allocation for Decentralized Federated Learning |
作者 | |
通讯作者 | Meng, Chuiyang |
DOI | |
发表日期 | 2023
|
会议名称 | IEEE Conference on Global Communications (IEEE GLOBECOM) - Intelligent Communications for Shared Prosperity
|
ISSN | 2334-0983
|
EISSN | 2576-6813
|
会议录名称 | |
会议日期 | DEC 04-08, 2023
|
会议地点 | null,Kuala Lumpur,MALAYSIA
|
出版地 | 345 E 47TH ST, NEW YORK, NY 10017 USA
|
出版者 | |
摘要 | Decentralized federated learning (DFL) enables clients to train a neural network model in a device-to-device (D2D) manner without central coordination. In practical systems, DFL faces challenges due to the dynamic topology changes, time-varying channel conditions, and limited computational capability of devices. These factors can affect the performance of DFL. To address the aforementioned challenges, in this paper, we propose a graph neural network (GNN)-based approach to minimize the total delay on training and improve the learning performance of DFL in D2D wireless networks. In our proposed approach, a multi-head graph attention mechanism is used to capture different features of clients and channels. We design a neighbor selection module which enables each client to select a subset of its neighbors for the participation of model aggregation. We develop a decoder which enables each client to determine its transmit power and CPU frequency. Experimental results show that our proposed algorithm can achieve a lower total delay on training when compared with three baseline schemes. Furthermore, the proposed algorithm achieves similar performance on the testing accuracy when compared with the full participation scheme. |
学校署名 | 其他
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
WOS研究方向 | Engineering
; Telecommunications
|
WOS类目 | Engineering, Electrical & Electronic
; Telecommunications
|
WOS记录号 | WOS:001178562001127
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:1
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/789175 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Univ British Columbia, Dept Elect & Comp Engn, Vancouver, BC, Canada 2.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen, Peoples R China |
推荐引用方式 GB/T 7714 |
Meng, Chuiyang,Tang, Ming,Setayesh, Mehdi,et al. GNN-based Neighbor Selection and Resource Allocation for Decentralized Federated Learning[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2023.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论