中文版 | English
题名

GNN-based Neighbor Selection and Resource Allocation for Decentralized Federated Learning

作者
通讯作者Meng, Chuiyang
DOI
发表日期
2023
会议名称
IEEE Conference on Global Communications (IEEE GLOBECOM) - Intelligent Communications for Shared Prosperity
ISSN
2334-0983
EISSN
2576-6813
会议录名称
会议日期
DEC 04-08, 2023
会议地点
null,Kuala Lumpur,MALAYSIA
出版地
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者
摘要
Decentralized federated learning (DFL) enables clients to train a neural network model in a device-to-device (D2D) manner without central coordination. In practical systems, DFL faces challenges due to the dynamic topology changes, time-varying channel conditions, and limited computational capability of devices. These factors can affect the performance of DFL. To address the aforementioned challenges, in this paper, we propose a graph neural network (GNN)-based approach to minimize the total delay on training and improve the learning performance of DFL in D2D wireless networks. In our proposed approach, a multi-head graph attention mechanism is used to capture different features of clients and channels. We design a neighbor selection module which enables each client to select a subset of its neighbors for the participation of model aggregation. We develop a decoder which enables each client to determine its transmit power and CPU frequency. Experimental results show that our proposed algorithm can achieve a lower total delay on training when compared with three baseline schemes. Furthermore, the proposed algorithm achieves similar performance on the testing accuracy when compared with the full participation scheme.
学校署名
其他
语种
英语
相关链接[来源记录]
收录类别
WOS研究方向
Engineering ; Telecommunications
WOS类目
Engineering, Electrical & Electronic ; Telecommunications
WOS记录号
WOS:001178562001127
来源库
Web of Science
引用统计
被引频次[WOS]:1
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/789175
专题工学院_计算机科学与工程系
作者单位
1.Univ British Columbia, Dept Elect & Comp Engn, Vancouver, BC, Canada
2.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen, Peoples R China
推荐引用方式
GB/T 7714
Meng, Chuiyang,Tang, Ming,Setayesh, Mehdi,et al. GNN-based Neighbor Selection and Resource Allocation for Decentralized Federated Learning[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2023.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Meng, Chuiyang]的文章
[Tang, Ming]的文章
[Setayesh, Mehdi]的文章
百度学术
百度学术中相似的文章
[Meng, Chuiyang]的文章
[Tang, Ming]的文章
[Setayesh, Mehdi]的文章
必应学术
必应学术中相似的文章
[Meng, Chuiyang]的文章
[Tang, Ming]的文章
[Setayesh, Mehdi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。