中文版 | English
题名

An Isotropic Shift-Pointwise Network for Crossbar-Efficient Neural Network Design

作者
发表日期
2024-03-27
ISSN
1530-1591
ISBN
979-8-3503-4860-6
会议录名称
会议日期
25-27 March 2024
会议地点
Valencia, Spain
摘要
Resistive random-access memory (RRAM), with its programmable and nonvolatile conductance, permits compute-in-memory (CIM) at a much higher energy efficiency than the traditional von Neumann architecture, making it a promising candidate for edge AI. Nonetheless, the fixed-size crossbar tiles on RRAM are inherently unfit for conventional pyramid-shape convolutional neural networks (CNNs) that incur low crossbar utilization. To this end, we recognize the mixed-signal (digital-analog) nature in RRAM circuits and customize an isotropic shift-pointwise network that exploits digital shift operations for efficient spatial mixing and analog pointwise operations for channel mixing. To fast ablate various shift-pointwise topologies, a new recon-figurable energy-efficient shift module is designed and packaged into a seamless mixed-domain simulator. The optimized design achieves a near-100% crossbar utilization, providing a state-of-the-art INT8 accuracy of 94.88% (76.55%) on the CIFAR-10 (CIFAR-100) dataset with 1.6M parameters, which sets a new standard for RRAM-based AI accelerators.
学校署名
其他
相关链接[IEEE记录]
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/789191
专题工学院_深港微电子学院
作者单位
1.Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong
2.School of Microelectronics, Southern University of Science and Technology, Shenzhen
推荐引用方式
GB/T 7714
Ziyi Guan,Boyu Li,Yuan Ren,et al. An Isotropic Shift-Pointwise Network for Crossbar-Efficient Neural Network Design[C],2024.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Ziyi Guan]的文章
[Boyu Li]的文章
[Yuan Ren]的文章
百度学术
百度学术中相似的文章
[Ziyi Guan]的文章
[Boyu Li]的文章
[Yuan Ren]的文章
必应学术
必应学术中相似的文章
[Ziyi Guan]的文章
[Boyu Li]的文章
[Yuan Ren]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。