中文版 | English
题名

FMTT: Fused Multi-Head Transformer with Tensor-Compression for 3D Point Clouds Detection on Edge Devices

作者
发表日期
2024-03-27
ISSN
1530-1591
ISBN
979-8-3503-4860-6
会议录名称
会议日期
25-27 March 2024
会议地点
Valencia, Spain
摘要
The real-time detection of 3D objects represents a grand challenge on edge devices. Existing 3D point clouds models are over-parameterized with heavy computation load. This paper proposes a highly compact model for 3D point clouds detection using tensor-compression. Compared to conventional methods, we propose a fused multi-head transformer tensor-compression (FMTT) to achieve both compact size yet with high accuracy. The FMTT leverages different ranks to extract both high and low-level features and then fuses them together to improve the accuracy. Experiments on the KITTI dataset show that the proposed FMTT can achieve 6.04× smaller than the uncompressed model from 55.09MB to 9.12MB such that the compressed model can be implemented on edge devices. It also achieves 2.62% improved accuracy in easy mode and 0.28% improved accuracy in hard mode.
学校署名
第一
相关链接[IEEE记录]
收录类别
EI入藏号
20242516298234
EI主题词
3D modeling ; Deep learning ; Object detection ; Object recognition
EI分类号
Ergonomics and Human Factors Engineering:461.4 ; Data Processing and Image Processing:723.2 ; Algebra:921.1
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/789192
专题工学院_深港微电子学院
作者单位
School of Microelectronics, Southern University of Science and Technology, Shenzhen, China
第一作者单位深港微电子学院
第一作者的第一单位深港微电子学院
推荐引用方式
GB/T 7714
Zikun Wei,Tingting Wang,Chenchen Ding,et al. FMTT: Fused Multi-Head Transformer with Tensor-Compression for 3D Point Clouds Detection on Edge Devices[C],2024.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zikun Wei]的文章
[Tingting Wang]的文章
[Chenchen Ding]的文章
百度学术
百度学术中相似的文章
[Zikun Wei]的文章
[Tingting Wang]的文章
[Chenchen Ding]的文章
必应学术
必应学术中相似的文章
[Zikun Wei]的文章
[Tingting Wang]的文章
[Chenchen Ding]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。