中文版 | English
题名

A Reinforcement Adversarial Framework Targeting Endogenous Functional Safety in ICS: Applied to Tennessee Eastman Process

作者
DOI
发表日期
2024-03-16
ISSN
2154-4352
ISBN
979-8-3503-7016-4
会议录名称
会议日期
14-16 March 2024
会议地点
Melbourne, Australia
摘要
Endogenous Safety and Security (ESS) of Industrial Control Systems (ICS) has gained great attention with the advent of Industry 4.0. However, with rising cyber threats, most current research has focused mainly on cybersecurity aspects. Our study aims to fill this research gap by focusing on the endogenous functional safety of ICS, with a particular emphasis on key control parameters “setpoints”. We propose a reinforcement adversarial framework to investigate the functional security issues arising from unexpected operations and malicious tampering against setpoints. In this framework, a deep reinforcement learning(DRL) agent interacts with a custom input rule model, which serves as both a dynamic validator and an adversary, aiming to explore previously unforeseen behaviors. Explored unexpected behaviors are continuously updated to the input rule model, enhancing system adaptability and robustness. Our study employed the Tennessee Eastman Process as a case study, using the proximal policy optimization(PPO) algorithm with Beta and Gaussian distributions. Our approach exhibited significant advantages in exploration efficiency over baseline methods such as random agents and simulated annealing. These findings underscore DRL's important role in augmenting ICS functional safety, thereby enhancing system resilience and security in Industry 4.0.
学校署名
第一
相关链接[IEEE记录]
收录类别
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/789221
专题工学院_计算机科学与工程系
作者单位
1.Department of Computer Science and Engineering, Shenzhen Key Laboratory of Safety and Security for Next Generation of Industrial Internet, Southern University of Science and Technology, Shenzhen, China
2.Department of Computer Science, Shenzhen Key Laboratory of Safety and Security for Next Generation of Industrial Internet, Southern University of Science and Technology, University of Reading Berkshire, UK
第一作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Xinyi Wu,Yulong Ding,Shuang-Hua Yang. A Reinforcement Adversarial Framework Targeting Endogenous Functional Safety in ICS: Applied to Tennessee Eastman Process[C],2024.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Xinyi Wu]的文章
[Yulong Ding]的文章
[Shuang-Hua Yang]的文章
百度学术
百度学术中相似的文章
[Xinyi Wu]的文章
[Yulong Ding]的文章
[Shuang-Hua Yang]的文章
必应学术
必应学术中相似的文章
[Xinyi Wu]的文章
[Yulong Ding]的文章
[Shuang-Hua Yang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。