中文版 | English
题名

SSDC: A Scalable Sparse Differential Checkpoint for Large-scale Deep Recommendation Models

作者
DOI
发表日期
2024-05-22
ISSN
0271-4302
ISBN
979-8-3503-3100-4
会议录名称
会议日期
19-22 May 2024
会议地点
Singapore, Singapore
摘要
Today deep recommendation models have become increasingly large, with parameter sizes reaching hundreds of GB or even TB scale. As a result, it requires large-scale cluster computing resources to train such models. However, large-scale computing clusters tend to experience frequent failures during runtime, so fault-tolerance mechanisms such as checkpointing and restart are widely used in model training. Traditional checkpointing techniques periodically save all parameters of model, resulting in significant overhead. To address this issue, we propose an improved partial checkpointing mechanism for recommendation models named SSDC. SSDC uses an adaptive threshold strategy to reduce expensive operations when saving checkpoints, thereby having good scalability. Furthermore, SSDC saves the differential value of the model parameters, making it feasible to sparsify the otherwise dense embedding tables, thus reducing the bandwidth and time overhead to reconstruct checkpoints. Our evaluations show that compared to state-of-the-art methods, SSDC greatly reduces the time overhead of saving and reconstructing checkpoints, while achieving comparable training accuracy.
学校署名
第一
相关链接[IEEE记录]
收录类别
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/789233
专题工学院_计算机科学与工程系
作者单位
1.Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
2.RAMS Lab, Huawei, Shenzhen, China
第一作者单位计算机科学与工程系
第一作者的第一单位计算机科学与工程系
推荐引用方式
GB/T 7714
Lingrui Xiang,Xiaofen Lu,Rui Zhang,et al. SSDC: A Scalable Sparse Differential Checkpoint for Large-scale Deep Recommendation Models[C],2024.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Lingrui Xiang]的文章
[Xiaofen Lu]的文章
[Rui Zhang]的文章
百度学术
百度学术中相似的文章
[Lingrui Xiang]的文章
[Xiaofen Lu]的文章
[Rui Zhang]的文章
必应学术
必应学术中相似的文章
[Lingrui Xiang]的文章
[Xiaofen Lu]的文章
[Rui Zhang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。