题名 | SSDC: A Scalable Sparse Differential Checkpoint for Large-scale Deep Recommendation Models |
作者 | |
DOI | |
发表日期 | 2024-05-22
|
ISSN | 0271-4302
|
ISBN | 979-8-3503-3100-4
|
会议录名称 | |
会议日期 | 19-22 May 2024
|
会议地点 | Singapore, Singapore
|
摘要 | Today deep recommendation models have become increasingly large, with parameter sizes reaching hundreds of GB or even TB scale. As a result, it requires large-scale cluster computing resources to train such models. However, large-scale computing clusters tend to experience frequent failures during runtime, so fault-tolerance mechanisms such as checkpointing and restart are widely used in model training. Traditional checkpointing techniques periodically save all parameters of model, resulting in significant overhead. To address this issue, we propose an improved partial checkpointing mechanism for recommendation models named SSDC. SSDC uses an adaptive threshold strategy to reduce expensive operations when saving checkpoints, thereby having good scalability. Furthermore, SSDC saves the differential value of the model parameters, making it feasible to sparsify the otherwise dense embedding tables, thus reducing the bandwidth and time overhead to reconstruct checkpoints. Our evaluations show that compared to state-of-the-art methods, SSDC greatly reduces the time overhead of saving and reconstructing checkpoints, while achieving comparable training accuracy. |
学校署名 | 第一
|
相关链接 | [IEEE记录] |
收录类别 | |
引用统计 | |
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/789233 |
专题 | 工学院_计算机科学与工程系 |
作者单位 | 1.Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China 2.RAMS Lab, Huawei, Shenzhen, China |
第一作者单位 | 计算机科学与工程系 |
第一作者的第一单位 | 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Lingrui Xiang,Xiaofen Lu,Rui Zhang,et al. SSDC: A Scalable Sparse Differential Checkpoint for Large-scale Deep Recommendation Models[C],2024.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论