中文版 | English
题名

DiffTraj: Generating GPS Trajectory with Diffusion Probabilistic Model

作者
通讯作者Zhao, Xiangyu; Yu, James J. Q.
发表日期
2023
会议名称
37th Conference on Neural Information Processing Systems (NeurIPS)
ISSN
1049-5258
会议录名称
会议日期
DEC 10-16, 2023
会议地点
null,New Orleans,LA
出版地
10010 NORTH TORREY PINES RD, LA JOLLA, CALIFORNIA 92037 USA
出版者
摘要
Pervasive integration of GPS-enabled devices and data acquisition technologies has led to an exponential increase in GPS trajectory data, fostering advancements in spatial-temporal data mining research. Nonetheless, GPS trajectories contain personal geolocation information, rendering serious privacy concerns when working with raw data. A promising approach to address this issue is trajectory generation, which involves replacing original data with generated, privacy-free alternatives. Despite the potential of trajectory generation, the complex nature of human behavior and its inherent stochastic characteristics pose challenges in generating high-quality trajectories. In this work, we propose a spatial-temporal diffusion probabilistic model for trajectory generation (DiffTraj). This model effectively combines the generative abilities of diffusion models with the spatial-temporal features derived from real trajectories. The core idea is to reconstruct and synthesize geographic trajectories from white noise through a reverse trajectory denoising process. Furthermore, we propose a Trajectory UNet (Traj-UNet) deep neural network to embed conditional information and accurately estimate noise levels during the reverse process. Experiments on two real-world datasets show that DiffTraj can be intuitively applied to generate high-fidelity trajectories while retaining the original distributions. Moreover, the generated results can support downstream trajectory analysis tasks and significantly outperform other methods in terms of geo-distribution evaluations.
学校署名
第一
语种
英语
相关链接[来源记录]
收录类别
资助项目
Stable Support Plan Program of Shenzhen Natural Science Fund[20220815111111002] ; Research Impact Fund[R1015-23] ; APRC -CityU New Research Initiatives[9610565] ; (Start-up Grant for New Faculty of City University of Hong Kong)["CityU -HKIDS","9360163"] ; Hong Kong ITC Innovation and Technology Fund Midstream Research Programme for Universities Project[No.ITS/034/22MS] ; Hong Kong Environmental and Conservation Fund[88/2022] ; SIRG CityU Strategic Interdisciplinary Research Grant["7020046","7020074"]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Information Systems
WOS记录号
WOS:001220818800005
来源库
Web of Science
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/789243
专题南方科技大学
作者单位
1.Southern Univ Sci & Technol, Shenzhen, Peoples R China
2.City Univ Hong Kong, Hong Kong, Peoples R China
3.Univ York, York, N Yorkshire, England
第一作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Zhu, Yuanshao,Ye, Yongchao,Zhang, Shiyao,et al. DiffTraj: Generating GPS Trajectory with Diffusion Probabilistic Model[C]. 10010 NORTH TORREY PINES RD, LA JOLLA, CALIFORNIA 92037 USA:NEURAL INFORMATION PROCESSING SYSTEMS (NIPS),2023.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhu, Yuanshao]的文章
[Ye, Yongchao]的文章
[Zhang, Shiyao]的文章
百度学术
百度学术中相似的文章
[Zhu, Yuanshao]的文章
[Ye, Yongchao]的文章
[Zhang, Shiyao]的文章
必应学术
必应学术中相似的文章
[Zhu, Yuanshao]的文章
[Ye, Yongchao]的文章
[Zhang, Shiyao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。