题名 | DiffTraj: Generating GPS Trajectory with Diffusion Probabilistic Model |
作者 | |
通讯作者 | Zhao, Xiangyu; Yu, James J. Q. |
发表日期 | 2023
|
会议名称 | 37th Conference on Neural Information Processing Systems (NeurIPS)
|
ISSN | 1049-5258
|
会议录名称 | |
会议日期 | DEC 10-16, 2023
|
会议地点 | null,New Orleans,LA
|
出版地 | 10010 NORTH TORREY PINES RD, LA JOLLA, CALIFORNIA 92037 USA
|
出版者 | |
摘要 | Pervasive integration of GPS-enabled devices and data acquisition technologies has led to an exponential increase in GPS trajectory data, fostering advancements in spatial-temporal data mining research. Nonetheless, GPS trajectories contain personal geolocation information, rendering serious privacy concerns when working with raw data. A promising approach to address this issue is trajectory generation, which involves replacing original data with generated, privacy-free alternatives. Despite the potential of trajectory generation, the complex nature of human behavior and its inherent stochastic characteristics pose challenges in generating high-quality trajectories. In this work, we propose a spatial-temporal diffusion probabilistic model for trajectory generation (DiffTraj). This model effectively combines the generative abilities of diffusion models with the spatial-temporal features derived from real trajectories. The core idea is to reconstruct and synthesize geographic trajectories from white noise through a reverse trajectory denoising process. Furthermore, we propose a Trajectory UNet (Traj-UNet) deep neural network to embed conditional information and accurately estimate noise levels during the reverse process. Experiments on two real-world datasets show that DiffTraj can be intuitively applied to generate high-fidelity trajectories while retaining the original distributions. Moreover, the generated results can support downstream trajectory analysis tasks and significantly outperform other methods in terms of geo-distribution evaluations. |
学校署名 | 第一
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | Stable Support Plan Program of Shenzhen Natural Science Fund[20220815111111002]
; Research Impact Fund[R1015-23]
; APRC -CityU New Research Initiatives[9610565]
; (Start-up Grant for New Faculty of City University of Hong Kong)["CityU -HKIDS","9360163"]
; Hong Kong ITC Innovation and Technology Fund Midstream Research Programme for Universities Project[No.ITS/034/22MS]
; Hong Kong Environmental and Conservation Fund[88/2022]
; SIRG CityU Strategic Interdisciplinary Research Grant["7020046","7020074"]
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Information Systems
|
WOS记录号 | WOS:001220818800005
|
来源库 | Web of Science
|
引用统计 | |
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/789243 |
专题 | 南方科技大学 |
作者单位 | 1.Southern Univ Sci & Technol, Shenzhen, Peoples R China 2.City Univ Hong Kong, Hong Kong, Peoples R China 3.Univ York, York, N Yorkshire, England |
第一作者单位 | 南方科技大学 |
第一作者的第一单位 | 南方科技大学 |
推荐引用方式 GB/T 7714 |
Zhu, Yuanshao,Ye, Yongchao,Zhang, Shiyao,et al. DiffTraj: Generating GPS Trajectory with Diffusion Probabilistic Model[C]. 10010 NORTH TORREY PINES RD, LA JOLLA, CALIFORNIA 92037 USA:NEURAL INFORMATION PROCESSING SYSTEMS (NIPS),2023.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论