题名 | Optimizing stimuli-based 4D printed structures: a paradigm shift in programmable material response |
作者 | |
通讯作者 | Liao, Wei-Hsin |
DOI | |
发表日期 | 2024
|
会议名称 | Conference on Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems
|
ISSN | 0277-786X
|
EISSN | 1996-756X
|
ISBN | 978-1-5106-7204-8
|
会议录名称 | |
卷号 | 12949
|
会议日期 | MAR 25-28, 2024
|
会议地点 | null,Long Beach,CA
|
出版地 | 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
|
出版者 | |
摘要 | This paper introduces a methodology for optimizing 4D printing design through the integration of Residual Neural Network (ResNet) and Genetic Algorithms (GA). Departing from traditional forward design approaches, our inverse design methodology addresses both the forward prediction and inverse optimization problems. ResNet efficiently predicts the performance of 4D-printed parts given their design, while GA optimizes material allocation and stimuli distribution to achieve desired configurations. The ResNet model exhibits high accuracy, converging to a small error (10-3), as validated across diverse cases. The GA demonstrates effectiveness in achieving optimal or near-optimal solutions, illustrated through case studies shaping parts into a parabola and a sinusoid. Experimental results align with optimized and simulated outcomes, showcasing the practical applicability of our approach in 4D printing design optimization. |
关键词 | |
学校署名 | 其他
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | Chinese University of Hong Kong[3110174]
; Research Grants Council, Hong Kong Special Administrative Region, China[C4074-22G]
|
WOS研究方向 | Construction & Building Technology
; Engineering
|
WOS类目 | Construction & Building Technology
; Engineering, Multidisciplinary
|
WOS记录号 | WOS:001239374700038
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:2
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/789245 |
专题 | 工学院_机械与能源工程系 南方科技大学 |
作者单位 | 1.Chinese Univ Hong Kong, Dept Mech & Automat Engn, Hong Kong, Peoples R China 2.Southern Univ Sci & Technol, Shenzhen Key Lab Soft Mech & Smart Mfg, Shenzhen 518055, Peoples R China 3.Southern Univ Sci & Technol, Dept Mech & Energy Engn, Shenzhen 518055, Peoples R China 4.Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Peoples R China 5.Univ Exeter, Dept Engn, Exeter, England 6.Chinese Univ Hong Kong, Inst Intelligent Design & Mfg, Hong Kong, Peoples R China |
第一作者单位 | 南方科技大学; 机械与能源工程系 |
推荐引用方式 GB/T 7714 |
Jin, Liuchao,Zhai, Xiaoya,Jiang, Jingchao,et al. Optimizing stimuli-based 4D printed structures: a paradigm shift in programmable material response[C]. 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA:SPIE-INT SOC OPTICAL ENGINEERING,2024.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论