中文版 | English
题名

Using Artificial Intelligence for Chest Radiograph Interpretation: A Retrospective Multi-reader-multi-case (MRMC) Study of the Automatic Detection of Multiple Abnormalities and Generation of Diagnostic Report System

作者
通讯作者Li, Hongjun; Lure, Fleming Y. M.
DOI
发表日期
2024
会议名称
Conference on Medical Imaging - Computer-Aided Diagnosis
ISSN
1605-7422
会议录名称
卷号
12927
会议日期
FEB 19-22, 2024
会议地点
null,San Diego,CA
出版地
1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA
出版者
摘要
In the study, we first introduce a novel AI-based system (MOM-ClaSeg) for multiple abnormality/disease detection and diagnostic report generation on PA/AP CXR images, which was recently developed by applying augmented Mask R-CNN deep learning and Decision Fusion Networks. We then evaluate performance of MOM-ClaSeg system in assisting radiologists in image interpretation and diagnostic report generation through a multi-reader-multi-case (MRMC) study. A total of 33,439 PA/AP CXR images were retrospectively collected from 15 hospitals, which were divided into an experimental group of 25,840 images and a control group of 7,599 images with and without processed by MOM-ClaSeg system, respectively. In this MRMC study, 6 junior radiologists (5 similar to 10yr experience) first read these images and generated initial diagnostic reports with/without viewing MOM-ClaSeg-generated results. Next, the initial reports were reviewed by 2 senior radiologists (>15yr experience) to generate final reports. Additionally, 3 consensus expert radiologists (>25yr experience) reconciled the potential difference between initial and final reports. Comparison results showed that using MOM-ClaSeg, diagnostic sensitivity of junior radiologists increased significantly by 18.67% (from 70.76% to 89.43%, P<0.001), while specificity decreased by 3.36% (from 99.49% to 96.13%, P<0.001). Average reading/diagnostic time in experimental group with MOM-ClaSeg reduced by 27.07% (P<0.001), with a particularly significant reduction of 66.48% (P<0.001) on abnormal images, indicating that MOM-ClaSeg system has potential for fast lung abnormality/disease triaging. This study demonstrates feasibility of applying the first AI-based system to assist radiologists in image interpretation and diagnostic report generation, which is a promising step toward improved diagnostic performance and productivity in future clinical practice.
关键词
学校署名
其他
语种
英语
相关链接[来源记录]
收录类别
资助项目
Shenzhen Science and Technology Program["KQTD2017033110081833","JSGG20201102162802008","JCYJ20220531093817040"] ; Guangzhou Science and Technology Planning Project[2023A03J0536]
WOS研究方向
Computer Science ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号
WOS:001208134600031
来源库
Web of Science
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/789246
专题南方科技大学第二附属医院
南方科技大学第一附属医院
作者单位
1.Shenzhen Zhying Med Imaging Co Ltd, Shenzhen, Peoples R China
2.Peking Univ, Dept Radiol, Shenzhen Hosp, Shenzhen, Guangdong, Peoples R China
3.Southern Univ Sci & Technol, Shenzhen Peoples Hosp 3, Natl Clin Res Ctr Infect Dis, Dept Radiol,Hosp 2, Shenzhen, Guangdong, Peoples R China
4.Univ Oklahoma, Sch Elect & Comp Engn, Norman, OK USA
5.NIH, Natl Lib Med, Bethesda, MD USA
6.Univ Chicago, Dept Radiol, Chicago, IL USA
7.Caddie Technol Inc, Potomac, MD USA
8.Capital Med Univ, Beijing YouAn Hosp, Dept Radiol, Beijing, Peoples R China
9.MS Technol Corp, Rockville, MD USA
推荐引用方式
GB/T 7714
Guo, Lin,Cheng, Guanxun,Wang, Lifei,et al. Using Artificial Intelligence for Chest Radiograph Interpretation: A Retrospective Multi-reader-multi-case (MRMC) Study of the Automatic Detection of Multiple Abnormalities and Generation of Diagnostic Report System[C]. 1000 20TH ST, PO BOX 10, BELLINGHAM, WA 98227-0010 USA:SPIE-INT SOC OPTICAL ENGINEERING,2024.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Guo, Lin]的文章
[Cheng, Guanxun]的文章
[Wang, Lifei]的文章
百度学术
百度学术中相似的文章
[Guo, Lin]的文章
[Cheng, Guanxun]的文章
[Wang, Lifei]的文章
必应学术
必应学术中相似的文章
[Guo, Lin]的文章
[Cheng, Guanxun]的文章
[Wang, Lifei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。