题名 | Multi-domain Recommendation with Embedding Disentangling and Domain Alignment |
作者 | |
通讯作者 | Cheng, Reynold; Tang, Bo |
DOI | |
发表日期 | 2023
|
会议名称 | 32nd ACM International Conference on Information and Knowledge Management (CIKM)
|
会议录名称 | |
会议日期 | OCT 21-25, 2023
|
会议地点 | null,Birmingham,ENGLAND
|
出版地 | 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES
|
出版者 | |
摘要 | Multi-domain recommendation (MDR) aims to provide recommendations for different domains (e.g., types of products) with overlapping users/items and is common for platforms such as Amazon, Facebook, and LinkedIn that host multiple services. Existing MDR models face two challenges: First, it is difficult to disentangle knowledge that generalizes across domains (e.g., a user likes cheap items) and knowledge specific to a single domain (e.g., a user likes blue clothing but not blue cars). Second, they have limited ability to transfer knowledge across domains with small overlaps. We propose a new MDR method named EDDA with two key components, i.e., embedding disentangling recommender and domain alignment, to tackle the two challenges respectively. In particular, the embedding disentangling recommender separates both the model and embedding for the inter-domain part and the intra-domain part, while most existing MDR methods only focus on model-level disentangling. The domain alignment leverages random walks from graph processing to identify similar user/item pairs from different domains and encourages similar user/item pairs to have similar embeddings, enhancing knowledge transfer. We compare EDDA with 12 state-of-the-art baselines on 3 real datasets. The results show that EDDA consistently outperforms the baselines on all datasets and domains. All datasets and codes are available at https://github.com/Stevenn9981/EDDA. |
关键词 | |
学校署名 | 通讯
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | HKUTCL Joint Research Center for Artificial Intelligence[200009430]
; University of Hong Kong["104005858","10400599"]
; Guangdong-Hong Kong-Macau Joint Laboratory Program[2020B1212030009]
; Hong Kong Jockey Club Charities Trust (HKJC)[260920140]
; Shenzhen Fundamental Research Program[20220815112848002]
; Guangdong Provincial Key Laboratory[2020B121201001]
|
WOS研究方向 | Computer Science
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Information Systems
|
WOS记录号 | WOS:001161549501097
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:1
|
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/789258 |
专题 | 工学院_计算机科学与工程系 南方科技大学 |
作者单位 | 1.Univ Hong Kong, Hong Kong, Peoples R China 2.Southern Univ Sci & Technol, Hong Kong, Peoples R China 3.Huawei Noahs Ark Lab, Montreal, PQ, Canada 4.Univ Hong Kong, Dept Comp Sci, Hong Kong, Peoples R China 5.Univ Hong Kong, Musketeers Fdn Inst Data Sci, Hong Kong, Peoples R China 6.Guangdong Hong Kong Macau Joint Lab, Hong Kong, Peoples R China 7.Southern Univ Sci & Technol, Res Inst Trustworthy Autonomous Syst, Shenzhen, Peoples R China 8.Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen, Peoples R China |
第一作者单位 | 南方科技大学 |
通讯作者单位 | 南方科技大学; 计算机科学与工程系 |
推荐引用方式 GB/T 7714 |
Ning, Wentao,Yan, Xiao,Liu, Weiwen,et al. Multi-domain Recommendation with Embedding Disentangling and Domain Alignment[C]. 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES:ASSOC COMPUTING MACHINERY,2023.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论