中文版 | English
题名

Wall Thickness Estimation from Short Axis Ultrasound Images via Temporal Compatible Deformation Learning

作者
通讯作者Liu, Yingying; Xue, Wufeng
DOI
发表日期
2023
会议名称
26th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI)
ISSN
0302-9743
EISSN
1611-3349
ISBN
978-3-031-43986-5
会议录名称
卷号
14225
会议日期
OCT 08-12, 2023
会议地点
null,Vancouver,CANADA
出版地
GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
出版者
摘要
Structural parameters of the heart, such as left ventricular wall thickness (LVWT), have important clinical significance for cardiac disease. In clinical practice, it requires tedious labor work to be obtained manually from ultrasound images and results in large variations between experts. Great challenges exist to automatize this procedure: the myocardium boundary is sensitive to heavy noise and can lead to irregular boundaries; the temporal dynamics in the ultrasound video are not well retained. In this paper, we propose a Temporally Compatible Deformation learning network, named TC-Deformer, to detect the myocardium boundaries and estimate LVWT automatically. Specifically, we first propose a two-stage deformation learning network to estimate the myocardium boundaries by deforming a prior myocardium template. A global affine transformation is first learned to shift and scale the template. Then a dense deformation field is learned to adjust locally the template to match the myocardium boundaries. Second, to make the deformation learning of different frames become compatible in the temporal dynamics, we adopt the mean parameters of affine transformation for all frames and propose a bi-direction deformation learning to guarantee that the deformation fields across the whole sequences can be applied to both the myocardium boundaries and the ultrasound images. Experimental results on an ultrasound dataset of 201 participants show that the proposed method can achieve good boundary detection of basal, middle, and apical myocardium, and lead to accurate estimation of the LVWT, with a mean absolute error of less than 1.00 mm. When compared with human methods, our TC-Deformer performs better than the junior cardiologists and is on par with the middle-level cardiologists.
关键词
学校署名
通讯
语种
英语
相关链接[来源记录]
收录类别
资助项目
Natural Science Foundation of China[62171290]
WOS研究方向
Computer Science ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号
WOS:001109635100021
来源库
Web of Science
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/789261
专题南方科技大学第一附属医院
作者单位
1.Shenzhen Univ, Med Sch, Sch Biomed Engn, Natl Reg Key Technol Engn Lab Med Ultrasound, Shenzhen, Peoples R China
2.Shenzhen Univ, Med Ultrasound Image Comp MUSIC Lab, Shenzhen, Peoples R China
3.Shenzhen Univ, Marshall Lab Biomed Engn, Shenzhen, Peoples R China
4.Jinan Univ, Clin Med Coll 2, Shenzhen Peoples Hosp, Dept Ultrasound, Shenzhen, Peoples R China
5.Southern Univ Sci & Technol, Affiliated Hosp 1, Shenzhen, Peoples R China
通讯作者单位南方科技大学第一附属医院
推荐引用方式
GB/T 7714
Zhang, Ang,Peng, Guijuan,Zheng, Jialan,et al. Wall Thickness Estimation from Short Axis Ultrasound Images via Temporal Compatible Deformation Learning[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2023.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhang, Ang]的文章
[Peng, Guijuan]的文章
[Zheng, Jialan]的文章
百度学术
百度学术中相似的文章
[Zhang, Ang]的文章
[Peng, Guijuan]的文章
[Zheng, Jialan]的文章
必应学术
必应学术中相似的文章
[Zhang, Ang]的文章
[Peng, Guijuan]的文章
[Zheng, Jialan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。