题名 | Wall Thickness Estimation from Short Axis Ultrasound Images via Temporal Compatible Deformation Learning |
作者 | |
通讯作者 | Liu, Yingying; Xue, Wufeng |
DOI | |
发表日期 | 2023
|
会议名称 | 26th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI)
|
ISSN | 0302-9743
|
EISSN | 1611-3349
|
ISBN | 978-3-031-43986-5
|
会议录名称 | |
卷号 | 14225
|
会议日期 | OCT 08-12, 2023
|
会议地点 | null,Vancouver,CANADA
|
出版地 | GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
|
出版者 | |
摘要 | Structural parameters of the heart, such as left ventricular wall thickness (LVWT), have important clinical significance for cardiac disease. In clinical practice, it requires tedious labor work to be obtained manually from ultrasound images and results in large variations between experts. Great challenges exist to automatize this procedure: the myocardium boundary is sensitive to heavy noise and can lead to irregular boundaries; the temporal dynamics in the ultrasound video are not well retained. In this paper, we propose a Temporally Compatible Deformation learning network, named TC-Deformer, to detect the myocardium boundaries and estimate LVWT automatically. Specifically, we first propose a two-stage deformation learning network to estimate the myocardium boundaries by deforming a prior myocardium template. A global affine transformation is first learned to shift and scale the template. Then a dense deformation field is learned to adjust locally the template to match the myocardium boundaries. Second, to make the deformation learning of different frames become compatible in the temporal dynamics, we adopt the mean parameters of affine transformation for all frames and propose a bi-direction deformation learning to guarantee that the deformation fields across the whole sequences can be applied to both the myocardium boundaries and the ultrasound images. Experimental results on an ultrasound dataset of 201 participants show that the proposed method can achieve good boundary detection of basal, middle, and apical myocardium, and lead to accurate estimation of the LVWT, with a mean absolute error of less than 1.00 mm. When compared with human methods, our TC-Deformer performs better than the junior cardiologists and is on par with the middle-level cardiologists. |
关键词 | |
学校署名 | 通讯
|
语种 | 英语
|
相关链接 | [来源记录] |
收录类别 | |
资助项目 | Natural Science Foundation of China[62171290]
|
WOS研究方向 | Computer Science
; Radiology, Nuclear Medicine & Medical Imaging
|
WOS类目 | Computer Science, Artificial Intelligence
; Computer Science, Theory & Methods
; Radiology, Nuclear Medicine & Medical Imaging
|
WOS记录号 | WOS:001109635100021
|
来源库 | Web of Science
|
引用统计 | |
成果类型 | 会议论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/789261 |
专题 | 南方科技大学第一附属医院 |
作者单位 | 1.Shenzhen Univ, Med Sch, Sch Biomed Engn, Natl Reg Key Technol Engn Lab Med Ultrasound, Shenzhen, Peoples R China 2.Shenzhen Univ, Med Ultrasound Image Comp MUSIC Lab, Shenzhen, Peoples R China 3.Shenzhen Univ, Marshall Lab Biomed Engn, Shenzhen, Peoples R China 4.Jinan Univ, Clin Med Coll 2, Shenzhen Peoples Hosp, Dept Ultrasound, Shenzhen, Peoples R China 5.Southern Univ Sci & Technol, Affiliated Hosp 1, Shenzhen, Peoples R China |
通讯作者单位 | 南方科技大学第一附属医院 |
推荐引用方式 GB/T 7714 |
Zhang, Ang,Peng, Guijuan,Zheng, Jialan,et al. Wall Thickness Estimation from Short Axis Ultrasound Images via Temporal Compatible Deformation Learning[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2023.
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论