中文版 | English
题名

gSampler: General and Efficient GPU-based Graph Sampling for Graph Learning

作者
通讯作者Gong, Ping
DOI
发表日期
2023
会议名称
29th ACM Symposium on Operating Systems Principles (SOSP)
会议录名称
会议日期
OCT 23-26, 2023
会议地点
Meta,Koblenz,GERMANY
出版地
1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES
出版者
摘要
Graph sampling prepares training samples for graph learning and can dominate the training time. Due to the increasing algorithm diversity and complexity, existing sampling frameworks are insufficient in the generality of expression and the efficiency of execution. To close this gap, we conduct a comprehensive study on 15 popular graph sampling algorithms to motivate the design of gSampler, a general and efficient GPU-based graph sampling framework. gSampler models graph sampling using a general 4-step Extract-Compute-Select-Finalize (ECSF) programming model, proposes a set of matrix-centric APIs that allow to easily express complex graph sampling algorithms, and incorporates a data-flow intermediate representation (IR) that translates high-level API codes for efficient GPU execution. We demonstrate that implementing graph sampling algorithms with gSampler is easy and intuitive. We also conduct extensive experiments with 7 algorithms, 4 graph datasets, and 2 hardware configurations. The results show that gSampler introduces sampling speedups of 1.14-32.7x and an average speedup of 6.54x, compared to state-of-the-art GPU-based graph sampling systems such as DGL, which translates into an overall time reduction of over 40% for graph learning. gSampler is open-source at https://tinyurl.com/29twthd4.
关键词
学校署名
其他
语种
英语
相关链接[来源记录]
收录类别
资助项目
National Natural Science Foundation of China["62141216","62172382","61832011"]
WOS研究方向
Computer Science
WOS类目
Computer Science, Hardware & Architecture ; Computer Science, Software Engineering ; Computer Science, Theory & Methods
WOS记录号
WOS:001135072900036
来源库
Web of Science
引用统计
成果类型会议论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/789263
专题南方科技大学
作者单位
1.Univ Sci & Technol China, Hefei, Peoples R China
2.Southern Univ Sci & Technol, Shenzhen, Peoples R China
3.AWS Shanghai Lab, Shanghai, Peoples R China
4.Hefei Comprehens Natl Sci Ctr, Inst Artificial Intelligence, Hefei, Peoples R China
推荐引用方式
GB/T 7714
Gong, Ping,Liu, Renjie,Mao, Zunyao,et al. gSampler: General and Efficient GPU-based Graph Sampling for Graph Learning[C]. 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES:ASSOC COMPUTING MACHINERY,2023.
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Gong, Ping]的文章
[Liu, Renjie]的文章
[Mao, Zunyao]的文章
百度学术
百度学术中相似的文章
[Gong, Ping]的文章
[Liu, Renjie]的文章
[Mao, Zunyao]的文章
必应学术
必应学术中相似的文章
[Gong, Ping]的文章
[Liu, Renjie]的文章
[Mao, Zunyao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。