题名 | Three-in-One: Coupling Chemical Reduction, Photoreduction, and Ion-Exchange Mechanisms in Greigite/Red Soil-Based Analcime Zeolite Composites for Cr(VI) Remediation in Groundwater |
作者 | |
通讯作者 | Chen, Hong |
发表日期 | 2023-11-02
|
DOI | |
发表期刊 | |
EISSN | 2690-0645
|
卷号 | 4期号:2 |
摘要 | Simultaneously reducing and immobilizing Cr(VI) anions in groundwater are crucial to minimize their hazardous effects. Herein, benefiting from the feasible chemical-/photo-reduction capability of greigite, together with the ion-exchange functionality of zeolites, the integrated three-in-one function in greigite/Re-ANA composites (GRAs) material has been employed for removing and immobilizing Cr(VI) in groundwater remediation. GRA-3 achieved a 99.4% Cr(VI) removal efficiency in a Cr(VI) solution with 1 mg/L. Cr(VI) residue concentration is 0.006 mg/L, complying with the control guideline in drinking water according to WHO regulations. A comprehensive mechanism study reveals that the chemical reduction and photoreduction processes are involved within greigite, which drives the process of reducing Cr(VI) to Cr(III). Subsequently, the as-reduced Cr(III) is either adsorbed on a greigite surface or ion-exchanged with zeolite microporous channels, thus getting immobilized. Furthermore, environmentally relevant Cr(VI) contaminated groundwater sampling from the chromate plant has been employed for the fixed-bed column study, which achieved the discharge standard for practical Cr(VI) polluted groundwater. This work reported a composite material matrix with great potential and significance for Cr(VI) remediation, which could be employed in permeable reactive barriers for Cr(VI)-polluted groundwater remediation in the future. |
关键词 | |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | National Key Research and Development Program of China[2020B1515020022]
; Natural Science Funds for Distinguished Young Scholar of Guangdong Province, China[2021YFA1202500]
; National Key Research and Development Program of China[ZDSYS20200421111401738]
|
WOS研究方向 | Engineering
|
WOS类目 | Engineering, Environmental
|
WOS记录号 | WOS:001158815500001
|
出版者 | |
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:6
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/789317 |
专题 | 工学院_环境科学与工程学院 |
作者单位 | Southern Univ Sci & Technol, Sch Environm Sci & Engn, Shenzhen 518055, Peoples R China |
第一作者单位 | 环境科学与工程学院 |
通讯作者单位 | 环境科学与工程学院 |
第一作者的第一单位 | 环境科学与工程学院 |
推荐引用方式 GB/T 7714 |
Tang, Huan,Deng, Shimao,Chu, Zheting,et al. Three-in-One: Coupling Chemical Reduction, Photoreduction, and Ion-Exchange Mechanisms in Greigite/Red Soil-Based Analcime Zeolite Composites for Cr(VI) Remediation in Groundwater[J]. ACS ES&T ENGINEERING,2023,4(2).
|
APA |
Tang, Huan.,Deng, Shimao.,Chu, Zheting.,Shangguan, Yangzi.,Liang, Jiaxin.,...&Chen, Hong.(2023).Three-in-One: Coupling Chemical Reduction, Photoreduction, and Ion-Exchange Mechanisms in Greigite/Red Soil-Based Analcime Zeolite Composites for Cr(VI) Remediation in Groundwater.ACS ES&T ENGINEERING,4(2).
|
MLA |
Tang, Huan,et al."Three-in-One: Coupling Chemical Reduction, Photoreduction, and Ion-Exchange Mechanisms in Greigite/Red Soil-Based Analcime Zeolite Composites for Cr(VI) Remediation in Groundwater".ACS ES&T ENGINEERING 4.2(2023).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论