中文版 | English
题名

Deep learning based CETSA feature prediction cross multiple cell lines with latent space representation

作者
通讯作者Yang, Xulei; Tam, Wai Leong
发表日期
2024-01-22
DOI
发表期刊
ISSN
2045-2322
卷号14期号:1
摘要
Mass spectrometry-coupled cellular thermal shift assay (MS-CETSA), a biophysical principle-based technique that measures the thermal stability of proteins at the proteome level inside the cell, has contributed significantly to the understanding of drug mechanisms of action and the dissection of protein interaction dynamics in different cellular states. One of the barriers to the wide applications of MS-CETSA is that MS-CETSA experiments must be performed on the specific cell lines of interest, which is typically time-consuming and costly in terms of labeling reagents and mass spectrometry time. In this study, we aim to predict CETSA features in various cell lines by introducing a computational framework called CycleDNN based on deep neural network technology. For a given set of n cell lines, CycleDNN comprises n auto-encoders. Each auto-encoder includes an encoder to convert CETSA features from one cell line into latent features in a latent space Z. It also features a decoder that transforms the latent features back into CETSA features for another cell line. In such a way, the proposed CycleDNN creates a cyclic prediction of CETSA features across different cell lines. The prediction loss, cycle-consistency loss, and latent space regularization loss are used to guide the model training. Experimental results on a public CETSA dataset demonstrate the effectiveness of our proposed approach. Furthermore, we confirm the validity of the predicted MS-CETSA data from our proposed CycleDNN through validation in protein-protein interaction prediction.
相关链接[来源记录]
收录类别
语种
英语
学校署名
其他
WOS研究方向
Science & Technology - Other Topics
WOS类目
Multidisciplinary Sciences
WOS记录号
WOS:001148428500076
出版者
来源库
Web of Science
引用统计
被引频次[WOS]:1
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/789327
专题南方科技大学第一附属医院
作者单位
1.ASTAR, Inst Infocomm Res I2R, Singapore City 138632, Singapore
2.Natl Univ Singapore NUS, Singapore City 119077, Singapore
3.ASTAR, Inst Mol & Cell Biol IMCB, Singapore City 138632, Singapore
4.Jinan Univ, Southern Univ Sci & Technol, Shenzhen Peoples Hosp, Affiliated Hosp 1, Shenzhen 518020, Peoples R China
5.Karolinska Inst, Dept Oncol & Pathol, S-17177 Stockholm, Sweden
6.ASTAR, Genome Inst Singapore GIS, Singapore City 138632, Singapore
推荐引用方式
GB/T 7714
Zhao, Shenghao,Yang, Xulei,Zeng, Zeng,et al. Deep learning based CETSA feature prediction cross multiple cell lines with latent space representation[J]. SCIENTIFIC REPORTS,2024,14(1).
APA
Zhao, Shenghao.,Yang, Xulei.,Zeng, Zeng.,Qian, Peisheng.,Zhao, Ziyuan.,...&Tam, Wai Leong.(2024).Deep learning based CETSA feature prediction cross multiple cell lines with latent space representation.SCIENTIFIC REPORTS,14(1).
MLA
Zhao, Shenghao,et al."Deep learning based CETSA feature prediction cross multiple cell lines with latent space representation".SCIENTIFIC REPORTS 14.1(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Zhao, Shenghao]的文章
[Yang, Xulei]的文章
[Zeng, Zeng]的文章
百度学术
百度学术中相似的文章
[Zhao, Shenghao]的文章
[Yang, Xulei]的文章
[Zeng, Zeng]的文章
必应学术
必应学术中相似的文章
[Zhao, Shenghao]的文章
[Yang, Xulei]的文章
[Zeng, Zeng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。