中文版 | English
题名

Approaching expert-level accuracy for differentiating ACL tear types on MRI with deep learning

作者
通讯作者Wang, Zheng; Zhang, Jianglin
发表日期
2024-01-10
DOI
发表期刊
ISSN
2045-2322
卷号14期号:1
摘要
Treatment for anterior cruciate ligament (ACL) tears depends on the condition of the ligament. We aimed to identify different tear statuses from preoperative MRI using deep learning-based radiomics with sex and age. We reviewed 862 patients with preoperative MRI scans reflecting ACL status from Hunan Provincial People's Hospital. Based on sagittal proton density-weighted images, a fully automated approach was developed that consisted of a deep learning model for segmenting ACL tissue (ACL-DNet) and a deep learning-based recognizer for ligament status classification (ACL-SNet). The efficacy of the proposed approach was evaluated by using the sensitivity, specificity and area under the receiver operating characteristic curve (AUC) and compared with that of a group of three orthopedists in the holdout test set. The ACL-DNet model yielded a Dice coefficient of 98% +/- 6% on the MRI datasets. Our proposed classification model yielded a sensitivity of 97% and a specificity of 97%. In comparison, the sensitivity of alternative models ranged from 84 to 90%, while the specificity was between 86 and 92%. The AUC of the ACL-SNet model was 99%, demonstrating high overall diagnostic accuracy. The diagnostic performance of the clinical experts as reflected in the AUC was 96%, 92% and 88%, respectively. The fully automated model shows potential as a highly reliable and reproducible tool that allows orthopedists to noninvasively identify the ACL status and may aid in optimizing different techniques, such as ACL remnant preservation, for ACL reconstruction.
相关链接[来源记录]
收录类别
语种
英语
学校署名
通讯
资助项目
Hunan provincial nature science foundation of China["2022JJ30189","2021JJ30173"] ; Hunan Provincial Natural Science Foundation of China[HNJG-2021-1120] ; Teaching Reform Research Project of Universities in Hunan Province[23A0643] ; Scientific Research Fund of Hunan Provincial Education Department[[2020]1Y263] ; Science and Technology Foundation of GuiZhou Province[23gyb11] ; Taizhou Science and Technology Plan Project[82073018] ; National Natural Science Foundation of China["JCYJ20210324113001005","JCYJ20210324114212035"]
WOS研究方向
Science & Technology - Other Topics
WOS类目
Multidisciplinary Sciences
WOS记录号
WOS:001139454600004
出版者
来源库
Web of Science
引用统计
被引频次[WOS]:1
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/789374
专题南方科技大学第一附属医院
作者单位
1.Hunan First Normal Univ, Sch Comp Sci, Changsha 410205, Peoples R China
2.Hunan Normal Univ, Hunan Prov People′s Hosp, Affiliated Hosp 1, Dept Orthopaed, Changsha 410002, Peoples R China
3.Hunan Prov Key Lab informat technol basic Educ, Changsha 410205, Peoples R China
4.Hunan Normal Univ, Affiliated Hosp 1, Hunan Prov Peoples Hosp, Dept Radiol, Changsha 410002, Peoples R China
5.Jinan Univ, Shenzhen People′s Hosp, Clin Med Coll 2, Dept Dermatol, Shenzhen 518020, Guangdong, Peoples R China
6.Southern Univ Sci & Technol, Affiliated Hosp 1, Shenzhen 518020, Guangdong, Peoples R China
7.Natl Clin Res Ctr Skin Dis, Candidate Branch, Shenzhen 518020, Guangdong, Peoples R China
8.Southern Univ Sci & Technol, Affiliated Hosp 1, Shenzhen 518020, Guangdong, Peoples R China
通讯作者单位南方科技大学第一附属医院
推荐引用方式
GB/T 7714
Xue, Yang,Yang, Shu,Sun, Wenjie,et al. Approaching expert-level accuracy for differentiating ACL tear types on MRI with deep learning[J]. SCIENTIFIC REPORTS,2024,14(1).
APA
Xue, Yang.,Yang, Shu.,Sun, Wenjie.,Tan, Hui.,Lin, Kaibin.,...&Zhang, Jianglin.(2024).Approaching expert-level accuracy for differentiating ACL tear types on MRI with deep learning.SCIENTIFIC REPORTS,14(1).
MLA
Xue, Yang,et al."Approaching expert-level accuracy for differentiating ACL tear types on MRI with deep learning".SCIENTIFIC REPORTS 14.1(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Xue, Yang]的文章
[Yang, Shu]的文章
[Sun, Wenjie]的文章
百度学术
百度学术中相似的文章
[Xue, Yang]的文章
[Yang, Shu]的文章
[Sun, Wenjie]的文章
必应学术
必应学术中相似的文章
[Xue, Yang]的文章
[Yang, Shu]的文章
[Sun, Wenjie]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。