[1] LI Y, LIU Y, LI R, et al. Collagen-based biomaterials for bone tissue engineering[J]. Materials & Design, 2021, 210: 110049.
[2] YI J, LIU Q, ZHANG Q, et al. Modular protein engineering-based biomaterials for skeletal tissue engineering[J]. Biomaterials, 2022, 282: 121414.
[3] YANG Y, LIU J, KOUSTENI S. Lipocalin 2- A bone-derived anorexigenic and β-cell promoting signal: From mice to humans[J]. Journal of Diabetes, 2023, 16(3): e13504.
[4] MAC C H, CHAN H Y, LIN Y H, et al. Engineering a biomimetic bone scaffold that can regulate redox homeostasis and promote osteogenesis to repair large bone defects[J]. Biomaterials, 2022, 286: 121574.
[5] DEC P, MODRZEJEWSKI A, PAWLIK A. Existing and novel biomaterials for bone tissue engineering[J]. International Journal of Molecular Sciences, 2022, 24(1): 529.
[6] SAUL D, KHOSLA S. Fracture healing in the setting of endocrine diseases, aging, and cellular senescence[J]. Endocrine Reviews, 2022, 43(6): 984-1002.
[7] DAR H Y, PERRIEN D S, PAL S, et al. Callus γδ T cells and microbe-induced intestinal Th17 cells improve fracture healing in mice[J]. Journal of Clinical Investigation, 2023, 133(8): e166577.
[8] CHENG L, CHEN Z, CAI Z, et al. Bioinspired functional black phosphorus electrospun fibers achieving recruitment and biomineralization for staged bone regeneration[J]. Small, 2020, 16(50): 2005433.
[9] RIESTER O, BORGOLTE M, CSUK R, et al. Challenges in bone tissue regeneration: Stem cell therapy, biofunctionality and antimicrobial properties of novel materials and its evolution[J]. International Journal of Molecular Sciences, 2020, 22(1): 192.
[10] HOSSEINI F S, ABEDINI A A, CHEN F, et al. Oxygen-generating biomaterials for translational bone regenerative engineering[J]. ACS Applied Materials & Interfaces, 2023, 15(44): 50721-50741.
[11] LIU Y, LUO D, YU M, et al. Thermodynamically controlled self- assembly of hierarchically staggered architecture as an osteoinductive alternative to bone autografts[J]. Advanced Functional Materials, 2019, 29(10): 1806445.
[12] MIRON R J, FUJIOKA K M, PIKOS M A, et al. The development of non-resorbable bone allografts: Biological background and clinical perspectives[J]. Periodontology 2000, 2024, 00: 1-19.
[13] HAN Y, CAO L, LI G, et al. Harnessing nucleic acids nanotechnology for bone/ cartilage regeneration[J]. Small, 2023, 19(37): 2301996.
[14] 任倩, 冯恒, 邹卫国. 骨骼损伤修复的研究进展[J]. 生命的化学, 2023, 43(07): 1083-1091.
[15] BATTAFARANO G, ROSSI M, DE M V, et al. Strategies for bone regeneration: From graft to tissue engineering[J]. International Journal of Molecular Sciences, 2021, 22(3): 1128.
[16] ZHANG T, WEI Q, ZHOU H, et al. Three-dimensional-printed individualized porous implants: A new “implant-bone” interface fusion concept for large bone defect treatment[J]. Bioactive Materials, 2021, 6(11): 3659-3670.
[17] RODRIGUEZ C A, PUNSET M, CALERO J A, et al. Powder metallurgy with space holder for porous titanium implants: A review[J]. Journal of Materials Science & Technology, 2021, 76: 129-149.
[18] POSADA V M, RAMíREZ J, CIVANTOS A, et al. Ion-bombardment-driven surface modification of porous magnesium scaffolds: Enhancing biocompatibility and osteoimmunomodulation[J]. Colloids and Surfaces B: Biointerfaces, 2024, 234: 113717.
[19] WANG X, XUE J, MA B, et al. Black bioceramics: Combining regeneration with therapy[J]. Advanced Materials, 2020, 32(48): 2005140.
[20] TANG K, XUE J, YANG Z, et al. Bone-inspired hydroxyapatite nanowire-based bioceramics with superior mechanical performance[J]. Applied Materials Today, 2024, 36: 102046.
[21] SHI X, NOMMEOTS N A, TODD N M, et al. Bioactive glass scaffold architectures regulate patterning of bone regeneration in vivo[J]. Applied Materials Today, 2020, 20: 100770.
[22] YANG Z, XUE J, LI T, et al. 3D printing of sponge spicules-inspired flexible bioceramic-based scaffolds[J]. Biofabrication, 2022, 14(3): 035009.
[23] ZHANG Y, LIU X, ZENG L, et al. Polymer fiber scaffolds for bone and cartilage tissue engineering[J]. Advanced Functional Materials, 2019, 29(36): 1903279.
[24] GUO L, LIANG Z, YANG L, et al. The role of natural polymers in bone tissue engineering[J]. Journal of Controlled Release, 2021, 338: 571-582.
[25] AMIRYAGHOUBI N, FATHI M, PESYAN N N, et al. Bioactive polymeric scaffolds for osteogenic repair and bone regenerative medicine[J]. Medicinal Research Reviews, 2020, 40(5): 1833-1870.
[26] HAN X, GAO W, ZHOU Z, et al. Application of biomolecules modification strategies on PEEK and its composites for osteogenesis and antibacterial properties[J]. Colloids and Surfaces B: Biointerfaces, 2022, 215: 112492.
[27] CHENG X, LI M, WANG J, et al. Crystallization-template-induced PEEK membranes for particulate matter capture at high temperature and separation of emulsion containing corrosive component[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107469.
[28] HE M, HUANG Y, XU H, et al. Modification of polyetheretherketone implants: From enhancing bone integration to enabling multi-modal therapeutics[J]. Acta Biomaterialia, 2021, 129: 18-32.
[29] 吕迪, 陈美玲. 聚醚醚酮在口腔种植领域的应用与表面功能化研究进展[J]. 临床口腔医学杂志, 2024, 40(04): 251-254.
[30] CAI G, WANG H, JUNG Y K, et al. Hierarchically porous surface of PEEK/nMCS composite created by femtosecond laser and incorporation of resveratrol exhibiting antibacterial performances and osteogenic activity in vitro[J]. Composites Part B: Engineering, 2020, 186: 107802.
[31] YANG Y, XIAO Y. Biomaterials regulating bone hematoma for osteogenesis[J]. Advanced Healthcare Materials, 2020, 9(23): 2000726.
[32] SHIU H T, GOSS B, LUTTON C, et al. Formation of blood clot on biomaterial implants influences bone healing[J]. Tissue Engineering Part B Reviews, 2014, 20(6): 697-712.
[33] XIAO L, MA Y P, CRAWFORD R, et al. The interplay between hemostasis and immune response in biomaterial development for osteogenesis[J]. Materials Today, 2022, 54: 202-224.
[34] WINDBERGER U, DIBIASI C, LOTZ E M, et al. The effect of hematocrit, fibrinogen concentration and temperature on the kinetics of clot formation of whole blood[J]. Clinical Hemorheology and Microcirculation, 2020, 75(4): 431-445.
[35] JIANG C, WANG Y L, HU Q F, et al. Immune changes in peripheral blood and hematoma of patients with intracerebral hemorrhage[J]. Faseb Journal, 2020, 34(2): 2774-2791.
[36] QIU Y, MYERS D R, LAM W A. The biophysics and mechanics of blood from a materials perspective[J]. Nature Reviews Materials, 2019, 4(5): 294-311.
[37] ZHENG C, ZENG Q, PIMPI S, et al. Research status and development potential of composite hemostatic materials[J]. Journal of Materials Chemistry B, 2020, 8(25): 5395-5410.
[38] MILLERET V, TUGULU S, SCHLOTTIG F, et al. Alkali treatment of microrough titanium surfaces affects macrophage/monocyte adhesion, platelet activation and architecture of blood clot formation[J]. European Cells & Materials, 2011, 21: 430-444.
[39] WOLBERG A S, CAMPBELL R A. Thrombin generation, fibrin clot formation and hemostasis[J]. Transfusion and Apheresis Science, 2008, 38(1): 15-23.
[40] WEISEL J W. Structure of fibrin: impact on clot stability[J]. Journal of Thrombosis and Haemostasis, 2007, 5: 116-124.
[41] WANG X, FRIIS T, GLATT V, et al. Structural properties of fracture haematoma: current status and future clinical implications[J]. Journal of Tissue Engineering Regenerative Medicine, 2017, 11(10): 2864-2875.
[42] WEISEL J W, LITVINOV R I. Mechanisms of fibrin polymerization and clinical implications[J]. Blood, 2013, 121(10): 1712-1719.
[43] PARK S H, SILVA M, BAHK W J, et al. Effect of repeated irrigation and debridement on fracture healing in an animal model[J]. Journal of Orthopedic Research, 2002, 20(6): 1197-1204.
[44] MIZUNO K, MINEO K, TACHIBANA T, et al. The osteogenetic potential of fracture hematoma-subperiosteal and intramuscular transplantation of the hematoma[J]. Journal of Bone and Joint Surgery-British Volume, 1990, 72(5): 822-829.
[45] BAI L, ZHAO Y, CHEN P, et al. Targeting early healing phase with titania nanotube arrays on tunable diameters to accelerate bone regeneration and osseointegration[J]. Small, 2021, 17(4): e2006287.
[46] HOFF P, GABER T, STREHL C, et al. Immunological characterization of the early human fracture hematoma[J]. Immunol Research, 2016, 64(5-6): 1195-1206.
[47] KOLAR P, SCHMIDT-BLEEK K, SCHELL H, et al. The early fracture hematoma and its potential role in fracture healing[J]. Tissue Engineering Part B: Reviews, 2010, 16(4): 427-434.
[48] ECHEVERRI L F, HERRERO M A, LOPEZ J M, et al. Early stages of bone fracture healing: formation of a fibrin-collagen scaffold in the fracture hematoma[J]. Bulletin of Mathematical Biology, 2015, 77(1): 156-183.
[49] IVANOVSKI S, BARTOLD P M, HUANG Y S. The role of foreign body response in peri‐implantitis: What is the evidence?[J]. Periodontology 2000, 2022, 90(1): 176-185.
[50] YANG M, ZHANG Z C, YUAN F Z, et al. An immunomodulatory polypeptide hydrogel for osteochondral defect repair[J]. Bioactive Materials, 2023, 19: 678-689.
[51] CHEN Z, KLEIN T, MURRAY R Z, et al. Osteoimmunomodulation for the development of advanced bone biomaterials[J]. Materials Today, 2016, 19(6): 304-321.
[52] YE J, XIE C, WANG C, et al. Promoting musculoskeletal system soft tissue regeneration by biomaterial-mediated modulation of macrophage polarization[J]. Bioactive Materials, 2021, 6(11): 4096-4109.
[53] XIE L, WANG G, WU Y, et al. Programmed surface on poly(aryl-ether-ether-ketone) initiating immune mediation and fulfilling bone regeneration sequentially[J]. The Innovation, 2021, 2(3): 100148.
[54] WHITAKER R, HERNAEZ E B, HERNANDEZ R M, et al. Immunomodulatory Biomaterials for Tissue Repair[J]. Chemical Reviews, 2021, 121(18): 11305-11335.
[55] COCKERILL I, SU Y, LEE J H, et al. Micro-/nanotopography on bioresorbable zinc dictates cytocompatibility, bone cell differentiation, and macrophage polarization[J]. Nano Letters, 2020, 20(6): 4594-4602.
[56] LEE S, CHOI J, SHIN S, et al. Analysis on migration and activation of live macrophages on transparent flat and nanostructured titanium[J]. Acta Biomater, 2011, 7(5): 2337-2344.
[57] LI M, GUO X, QI W, et al. Macrophage polarization plays roles in bone formation instructed by calcium phosphate ceramics[J]. Journal of Materials Chemistry B, 2020, 8(9): 1863-1877.
[58] ION R, STOIAN A B, DUMITRIU C, et al. Nanochannels formed on TiZr alloy improve biological response[J]. Acta Biomater, 2015, 24: 370-377.
[59] ZHU Y Z, LIANG H, LIU X M, et al. Regulation of macrophage polarization through surface topography design to facilitate implant-to-bone osteointegration[J]. Science Advances, 2021, 7(14): eabf6654.
[60] ZHAO Q, WANG J, WANG Y, et al. A stage-specific cell-manipulation platform for inducing endothelialization on demand[J]. National Science Review, 2020, 7(3): 629-643.
[61] ZHENG X, XIN L, LUO Y, et al. Near-Infrared-Triggered Dynamic Surface Topography for Sequential Modulation of Macrophage Phenotypes[J]. ACS Applied Materials & Interfaces, 2019, 11(46): 43689-43697.
[62] HOTCHKISS K M, CLARK N M, OLIVARES N R. Macrophage response to hydrophilic biomaterials regulates MSC recruitment and T-helper cell populations[J]. Biomaterials, 2018, 182: 202-215.
[63] HOTCHKISS K M, REDDY G B, HYZY S L, et al. Titanium surface characteristics, including topography and wettability, alter macrophage activation[J]. Acta Biomater, 2016, 31: 425-434.
[64] VISALAKSHAN R M, MACGREGOR M N, SASIDHARAN S, et al. Biomaterial surface hydrophobicity-mediated serum protein adsorption and immune responses[J]. ACS Applied Materials & Interfaces, 2019, 11(31): 27615-27623.
[65] HAMLET S, IVANOVSKI S. Inflammatory cytokine response to titanium chemical composition and nanoscale calcium phosphate surface modification[J]. Acta Biomater, 2011, 7(5): 2345-2353.
[66] LEE C H, KIM Y J, JANG J H, et al. Modulating macrophage polarization with divalent cations in nanostructured titanium implant surfaces[J]. Nanotechnology, 2016, 27(8): 085101.
[67] SODHI H, PANITCH A. Glycosaminoglycans in Tissue Engineering: A Review[J]. Biomolecules, 2021, 11(1): 29.
[68] BATOOL F, OZCELIK H, STUTZ C, et al. Modulation of immune-inflammatory responses through surface modifications of biomaterials to promote bone healing and regeneration[J]. Journal of Tissue Engineering, 2021, 12: 20417314211041428.
[69] BRODBECK W G, NAKAYAMA Y, MATSUDA T, et al. Biomaterial surface chemistry dictates adherent monocyte/macrophage cytokine expression in vitro[J]. Cytokine, 2002, 18(6): 311-319.
[70] KIM D, HAN S A, KIM J H, et al. Biomolecular piezoelectric materials: From amino acids to living tissues[J]. Advanced Materials, 2020, 32(14): e1906989.
[71] ZHU P, LAI C, CHENG M, et al. Differently charged P(VDF-TrFE) membranes influence osteogenesis through differential immunomodulatory function of macrophages[J]. Frontiers in Materials, 2022, 8: 790753.
[72] 仲宣树, 刘宗建, 耿雪, et al. 材料表面性质调控细胞黏附[J]. 化学进展, 2022, 34(05): 1153-1165.
[73] WANG F, WANG M, HE Q, et al. Black tantalic oxide submicro-particles coating on PEEK fibers woven into fabrics as artificial ligaments with photothermal antibacterial effect and osteogenic activity for promoting ligament-bone healing[J]. Journal of Materials Science & Technology, 2023, 133: 195-208.
[74] HUANG X, FU Q, DENG Y, et al. Surface roughness of silk fibroin/alginate microspheres for rapid hemostasis in vitro and in vivo[J]. Carbohydrate Polymers, 2021, 253: 117256.
[75] DU F, A W, LIU F, et al. Hydrophilic chitosan/graphene oxide composite sponge for rapid hemostasis and non-rebleeding removal[J]. Carbohydrate Polymers, 2023, 316: 121058.
[76] TANG J W, QUAN H D, YE J H. Photocatalytic properties and photoinduced hydrophilicity of surface-fluorinated TiO2[J]. Chemistry of Materials, 2007, 19(1): 116-122.
[77] WANG S, HE W, WANG H, et al. Hematoma-like dynamic hydrogelation through natural glycopeptide molecular recognition for infected bone fracture repair[J]. Bioactive Materials, 2023, 30: 73-84.
[78] KIZHAKKEDATHU J N, CONWAY E M. Biomaterial and cellular implants: foreign surfaces where immunity and coagulation meet[J]. Blood, 2022, 139(13): 1987-1998.
[79] SHIU H T, LEUNG P C, KO C H. The roles of cellular and molecular components of a hematoma at early stage of bone healing[J]. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12(4): e1911-e1925.
[80] HOSSEINNEJAD A, LUDWIG N, MERSMANN S, et al. Bioactive nanogels mimicking the antithrombogenic nitric oxide-release function of the endothelium[J]. Small, 2023, 19(14): 2205185.
[81] WU S, SHAN Z, XIE L, et al. Mesopore controls the responses of blood clot-immune complex via modulating fibrin network[J]. Advanced Science, 2021, 9(3): 2103608.
[82] SUN Q, SI J, ZHAO L, et al. Direct thrombin inhibitor-bivalirudin improved the hemocompatibility of electrospun polycaprolactone vascular grafts[J]. Composites Part B: Engineering, 2022, 234:109702.
[83] DUDA G N, GEISSLER S, CHECA S, et al. The decisive early phase of bone regeneration[J]. Nature Reviews Rheumatology, 2023, 19(2): 78-95.
[84] FAN Q, BAI J, SHAN H, et al. Implantable blood clot loaded with BMP-2 for regulation of osteoimmunology and enhancement of bone repair[J]. Bioactive Materials, 2021, 6(11): 4014-4026.
[85] GAO A, LIAO Q, XIE L, et al. Tuning the surface immunomodulatory functions of polyetheretherketone for enhanced osseointegration[J]. Biomaterials, 2020, 230: 119642.
[86] SU N, VILLICANA C, BARATI D, et al. Stem cell membrane-coated micro ribbon scaffolds induce regenerative innate and adaptive immune responses in a critical-size cranial bone defect model[J]. Advanced Materials, 2023, 35(10): 2208781.
[87] NEWMAN H, SHIH Y V, VARGHESE S. Resolution of inflammation in bone regeneration: From understandings to therapeutic applications[J]. Biomaterials, 2021, 277: 121114.
[88] ZHANG J, TONG D, SONG H, et al. Osteoimmunity-regulating biomimetically hierarchical scaffold for augmented bone regeneration[J]. Advanced Materials, 2022, 34(36):2202044.
[89] SEMISCH A, HARTWIG A. Copper ions interfere with the reduction of the water-soluble tetrazolium salt-8[J]. Chemical Research in Toxicology, 2014, 27(2): 169-171.
[90] BABUSKA V, KOLAJA DOBRA J, DLUHOS L, et al. Repeated exposure of nanostructured titanium to osteoblasts with respect to peri-implantitis[J]. Materials, 2020, 13(3): 697.
[91] BAHNEY C S, ZONDERVAN R L, ALLISON P, et al. Cellular biology of fracture healing[J]. Journal of Orthopaedic Research, 2018, 37(1): 35-50.
修改评论