中文版 | English
题名

基于生物材料表界面调控的凝血-免疫级联过程研究

其他题名
STUDY OF THE COAGULATION- IMMUNITY CASCADE PROCESS BASED ON THE MODULATION OF BIOMATERIAL INTERFACES
姓名
姓名拼音
JIA Yuanyuan
学号
12233307
学位类型
硕士
学位专业
0856 材料与化工
学科门类/专业学位类别
08 工学
导师
王怀雨
导师单位
中国科学院深圳先进技术研究院
论文答辩日期
2024-05-07
论文提交日期
2024-07-25
学位授予单位
南方科技大学
学位授予地点
深圳
摘要

        骨缺损修复是一个复杂的、多细胞参与的级联过程,凝血与炎症作为植入物表面最初触发的生物反应,通过调控植入物的表面特性,可以实现植入体促修复功能的显著提升。然而,材料表/界面对早期血肿和炎症级联过程的影响及其调控机理仍有待深入探索。 
        因此,本论文聚焦于材料表面亲水性和粗糙度两大关键因素,探究材料表面特性对早期凝血与炎症反应的影响。本论文结合微球自组装技术和等离子体刻蚀技术,提高了聚醚醚酮表面亲水性,并通过构建表面锥刺状微纳结构实现了对表面粗糙度的调节。进一步构建体外血肿模型,通过扫描电子显微镜证明通过调控亲水性和粗糙度可以实现对血肿三维结构和组成的调节;结合聚合酶链式反应和酶联免疫吸附试验揭示了提高亲水性可以减弱血液中蛋白和相关细胞的粘附,进而血肿块中纤维蛋白直径降低、免疫细胞活性增强、炎症反应增强,而粗糙度增加可减弱以上影响。同时以巨噬细胞为炎症细胞代表,通过材料直接调控和血肿浸提液条件培养,结合聚合酶链式反应、酶联免疫吸附试验和免疫荧光染色等方法,证明了提高亲水性有利于巨噬细胞活化,而粗糙度的增强可减弱其炎症反应。综上所述,本论文揭示了材料表面性质在调控凝血与炎症反应中的重要作用,有望为医用植入材料的设计优化提供一定的理论支撑。

其他摘要

Bone defect repair is a complex, multicellular cascade process, and coagulation and inflammation, as biological responses initially triggered on the surface of the implant, can achieve a significant enhancement of the pro-repair function of the implant by modulating the surface properties of the implant. However, the influence of the material surface/interface on the early hematoma and inflammation cascade process and its regulatory mechanism still need to be deeply explored. 

Therefore, this dissertation focuses on two key factors, hydrophilicity and roughness of the material surface, to investigate the influence of material surface properties on early coagulation and inflammatory responses. In this thesis, the hydrophilicity of poly(ether ether ketone) surface was improved by combining microsphere self-assembly technology and plasma etching technology, and the modulation of surface roughness was realized by constructing surface cone-spine-like micro-nanostructures. Further, an in vitro hematoma model was constructed, and it was demonstrated by scanning electron microscopy that the regulation of hydrophilicity and roughness could realize the regulation of the three-dimensional structure and composition of the hematoma; the combination of polymerase chain reaction and enzyme-linked immunosorbent assay revealed that the increase of hydrophilicity could attenuate the adhesion of the blood 
proteins and the related cells, and consequently, the diameter of the fibrin in the  hematoma mass was reduced, the immune cells' activity was enhanced, and the  inflammatory response was strengthened, and the increase of roughness could attenuate the above mentioned effects. Increased roughness attenuates the above effects. Meanwhile, using macrophages as the representative of inflammatory cells, it was demonstrated that increased hydrophilicity favored macrophage activation, while enhanced roughness attenuated its inflammatory response through direct material modulation and hematoma extract conditioned culture, combined with polymerase chain reaction, enzyme-linked immunosorbent assay and immunofluorescence staining. In summary, this thesis reveals the important role of material surface properties in regulating coagulation and inflammatory responses, which is expected to provide certain theoretical support for the design optimization of medical implant materials. 

关键词
其他关键词
语种
中文
培养类别
独立培养
入学年份
2022
学位授予年份
2024-05
参考文献列表

[1] LI Y, LIU Y, LI R, et al. Collagen-based biomaterials for bone tissue engineering[J]. Materials & Design, 2021, 210: 110049.
[2] YI J, LIU Q, ZHANG Q, et al. Modular protein engineering-based biomaterials for skeletal tissue engineering[J]. Biomaterials, 2022, 282: 121414.
[3] YANG Y, LIU J, KOUSTENI S. Lipocalin 2- A bone-derived anorexigenic and β-cell promoting signal: From mice to humans[J]. Journal of Diabetes, 2023, 16(3): e13504.
[4] MAC C H, CHAN H Y, LIN Y H, et al. Engineering a biomimetic bone scaffold that can regulate redox homeostasis and promote osteogenesis to repair large bone defects[J]. Biomaterials, 2022, 286: 121574.
[5] DEC P, MODRZEJEWSKI A, PAWLIK A. Existing and novel biomaterials for bone tissue engineering[J]. International Journal of Molecular Sciences, 2022, 24(1): 529.
[6] SAUL D, KHOSLA S. Fracture healing in the setting of endocrine diseases, aging, and cellular senescence[J]. Endocrine Reviews, 2022, 43(6): 984-1002.
[7] DAR H Y, PERRIEN D S, PAL S, et al. Callus γδ T cells and microbe-induced intestinal Th17 cells improve fracture healing in mice[J]. Journal of Clinical Investigation, 2023, 133(8): e166577.
[8] CHENG L, CHEN Z, CAI Z, et al. Bioinspired functional black phosphorus electrospun fibers achieving recruitment and biomineralization for staged bone regeneration[J]. Small, 2020, 16(50): 2005433.
[9] RIESTER O, BORGOLTE M, CSUK R, et al. Challenges in bone tissue regeneration: Stem cell therapy, biofunctionality and antimicrobial properties of novel materials and its evolution[J]. International Journal of Molecular Sciences, 2020, 22(1): 192.
[10] HOSSEINI F S, ABEDINI A A, CHEN F, et al. Oxygen-generating biomaterials for translational bone regenerative engineering[J]. ACS Applied Materials & Interfaces, 2023, 15(44): 50721-50741.
[11] LIU Y, LUO D, YU M, et al. Thermodynamically controlled self- assembly of hierarchically staggered architecture as an osteoinductive alternative to bone autografts[J]. Advanced Functional Materials, 2019, 29(10): 1806445.
[12] MIRON R J, FUJIOKA K M, PIKOS M A, et al. The development of non-resorbable bone allografts: Biological background and clinical perspectives[J]. Periodontology 2000, 2024, 00: 1-19.
[13] HAN Y, CAO L, LI G, et al. Harnessing nucleic acids nanotechnology for bone/ cartilage regeneration[J]. Small, 2023, 19(37): 2301996.
[14] 任倩, 冯恒, 邹卫国. 骨骼损伤修复的研究进展[J]. 生命的化学, 2023, 43(07): 1083-1091.
[15] BATTAFARANO G, ROSSI M, DE M V, et al. Strategies for bone regeneration: From graft to tissue engineering[J]. International Journal of Molecular Sciences, 2021, 22(3): 1128.
[16] ZHANG T, WEI Q, ZHOU H, et al. Three-dimensional-printed individualized porous implants: A new “implant-bone” interface fusion concept for large bone defect treatment[J]. Bioactive Materials, 2021, 6(11): 3659-3670.
[17] RODRIGUEZ C A, PUNSET M, CALERO J A, et al. Powder metallurgy with space holder for porous titanium implants: A review[J]. Journal of Materials Science & Technology, 2021, 76: 129-149.
[18] POSADA V M, RAMíREZ J, CIVANTOS A, et al. Ion-bombardment-driven surface modification of porous magnesium scaffolds: Enhancing biocompatibility and osteoimmunomodulation[J]. Colloids and Surfaces B: Biointerfaces, 2024, 234: 113717.
[19] WANG X, XUE J, MA B, et al. Black bioceramics: Combining regeneration with therapy[J]. Advanced Materials, 2020, 32(48): 2005140.
[20] TANG K, XUE J, YANG Z, et al. Bone-inspired hydroxyapatite nanowire-based bioceramics with superior mechanical performance[J]. Applied Materials Today, 2024, 36: 102046.
[21] SHI X, NOMMEOTS N A, TODD N M, et al. Bioactive glass scaffold architectures regulate patterning of bone regeneration in vivo[J]. Applied Materials Today, 2020, 20: 100770.
[22] YANG Z, XUE J, LI T, et al. 3D printing of sponge spicules-inspired flexible bioceramic-based scaffolds[J]. Biofabrication, 2022, 14(3): 035009.
[23] ZHANG Y, LIU X, ZENG L, et al. Polymer fiber scaffolds for bone and cartilage tissue engineering[J]. Advanced Functional Materials, 2019, 29(36): 1903279.
[24] GUO L, LIANG Z, YANG L, et al. The role of natural polymers in bone tissue engineering[J]. Journal of Controlled Release, 2021, 338: 571-582.
[25] AMIRYAGHOUBI N, FATHI M, PESYAN N N, et al. Bioactive polymeric scaffolds for osteogenic repair and bone regenerative medicine[J]. Medicinal Research Reviews, 2020, 40(5): 1833-1870.
[26] HAN X, GAO W, ZHOU Z, et al. Application of biomolecules modification strategies on PEEK and its composites for osteogenesis and antibacterial properties[J]. Colloids and Surfaces B: Biointerfaces, 2022, 215: 112492.
[27] CHENG X, LI M, WANG J, et al. Crystallization-template-induced PEEK membranes for particulate matter capture at high temperature and separation of emulsion containing corrosive component[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107469.
[28] HE M, HUANG Y, XU H, et al. Modification of polyetheretherketone implants: From enhancing bone integration to enabling multi-modal therapeutics[J]. Acta Biomaterialia, 2021, 129: 18-32.
[29] 吕迪, 陈美玲. 聚醚醚酮在口腔种植领域的应用与表面功能化研究进展[J]. 临床口腔医学杂志, 2024, 40(04): 251-254.
[30] CAI G, WANG H, JUNG Y K, et al. Hierarchically porous surface of PEEK/nMCS composite created by femtosecond laser and incorporation of resveratrol exhibiting antibacterial performances and osteogenic activity in vitro[J]. Composites Part B: Engineering, 2020, 186: 107802.
[31] YANG Y, XIAO Y. Biomaterials regulating bone hematoma for osteogenesis[J]. Advanced Healthcare Materials, 2020, 9(23): 2000726.
[32] SHIU H T, GOSS B, LUTTON C, et al. Formation of blood clot on biomaterial implants influences bone healing[J]. Tissue Engineering Part B Reviews, 2014, 20(6): 697-712.
[33] XIAO L, MA Y P, CRAWFORD R, et al. The interplay between hemostasis and immune response in biomaterial development for osteogenesis[J]. Materials Today, 2022, 54: 202-224.
[34] WINDBERGER U, DIBIASI C, LOTZ E M, et al. The effect of hematocrit, fibrinogen concentration and temperature on the kinetics of clot formation of whole blood[J]. Clinical Hemorheology and Microcirculation, 2020, 75(4): 431-445.
[35] JIANG C, WANG Y L, HU Q F, et al. Immune changes in peripheral blood and hematoma of patients with intracerebral hemorrhage[J]. Faseb Journal, 2020, 34(2): 2774-2791.
[36] QIU Y, MYERS D R, LAM W A. The biophysics and mechanics of blood from a materials perspective[J]. Nature Reviews Materials, 2019, 4(5): 294-311.
[37] ZHENG C, ZENG Q, PIMPI S, et al. Research status and development potential of composite hemostatic materials[J]. Journal of Materials Chemistry B, 2020, 8(25): 5395-5410.
[38] MILLERET V, TUGULU S, SCHLOTTIG F, et al. Alkali treatment of microrough titanium surfaces affects macrophage/monocyte adhesion, platelet activation and architecture of blood clot formation[J]. European Cells & Materials, 2011, 21: 430-444.
[39] WOLBERG A S, CAMPBELL R A. Thrombin generation, fibrin clot formation and hemostasis[J]. Transfusion and Apheresis Science, 2008, 38(1): 15-23.
[40] WEISEL J W. Structure of fibrin: impact on clot stability[J]. Journal of Thrombosis and Haemostasis, 2007, 5: 116-124.
[41] WANG X, FRIIS T, GLATT V, et al. Structural properties of fracture haematoma: current status and future clinical implications[J]. Journal of Tissue Engineering Regenerative Medicine, 2017, 11(10): 2864-2875.
[42] WEISEL J W, LITVINOV R I. Mechanisms of fibrin polymerization and clinical implications[J]. Blood, 2013, 121(10): 1712-1719.
[43] PARK S H, SILVA M, BAHK W J, et al. Effect of repeated irrigation and debridement on fracture healing in an animal model[J]. Journal of Orthopedic Research, 2002, 20(6): 1197-1204.
[44] MIZUNO K, MINEO K, TACHIBANA T, et al. The osteogenetic potential of fracture hematoma-subperiosteal and intramuscular transplantation of the hematoma[J]. Journal of Bone and Joint Surgery-British Volume, 1990, 72(5): 822-829.
[45] BAI L, ZHAO Y, CHEN P, et al. Targeting early healing phase with titania nanotube arrays on tunable diameters to accelerate bone regeneration and osseointegration[J]. Small, 2021, 17(4): e2006287.
[46] HOFF P, GABER T, STREHL C, et al. Immunological characterization of the early human fracture hematoma[J]. Immunol Research, 2016, 64(5-6): 1195-1206.
[47] KOLAR P, SCHMIDT-BLEEK K, SCHELL H, et al. The early fracture hematoma and its potential role in fracture healing[J]. Tissue Engineering Part B: Reviews, 2010, 16(4): 427-434.
[48] ECHEVERRI L F, HERRERO M A, LOPEZ J M, et al. Early stages of bone fracture healing: formation of a fibrin-collagen scaffold in the fracture hematoma[J]. Bulletin of Mathematical Biology, 2015, 77(1): 156-183.
[49] IVANOVSKI S, BARTOLD P M, HUANG Y S. The role of foreign body response in peri‐implantitis: What is the evidence?[J]. Periodontology 2000, 2022, 90(1): 176-185.
[50] YANG M, ZHANG Z C, YUAN F Z, et al. An immunomodulatory polypeptide hydrogel for osteochondral defect repair[J]. Bioactive Materials, 2023, 19: 678-689.
[51] CHEN Z, KLEIN T, MURRAY R Z, et al. Osteoimmunomodulation for the development of advanced bone biomaterials[J]. Materials Today, 2016, 19(6): 304-321.
[52] YE J, XIE C, WANG C, et al. Promoting musculoskeletal system soft tissue regeneration by biomaterial-mediated modulation of macrophage polarization[J]. Bioactive Materials, 2021, 6(11): 4096-4109.
[53] XIE L, WANG G, WU Y, et al. Programmed surface on poly(aryl-ether-ether-ketone) initiating immune mediation and fulfilling bone regeneration sequentially[J]. The Innovation, 2021, 2(3): 100148.
[54] WHITAKER R, HERNAEZ E B, HERNANDEZ R M, et al. Immunomodulatory Biomaterials for Tissue Repair[J]. Chemical Reviews, 2021, 121(18): 11305-11335.
[55] COCKERILL I, SU Y, LEE J H, et al. Micro-/nanotopography on bioresorbable zinc dictates cytocompatibility, bone cell differentiation, and macrophage polarization[J]. Nano Letters, 2020, 20(6): 4594-4602.
[56] LEE S, CHOI J, SHIN S, et al. Analysis on migration and activation of live macrophages on transparent flat and nanostructured titanium[J]. Acta Biomater, 2011, 7(5): 2337-2344.
[57] LI M, GUO X, QI W, et al. Macrophage polarization plays roles in bone formation instructed by calcium phosphate ceramics[J]. Journal of Materials Chemistry B, 2020, 8(9): 1863-1877.
[58] ION R, STOIAN A B, DUMITRIU C, et al. Nanochannels formed on TiZr alloy improve biological response[J]. Acta Biomater, 2015, 24: 370-377.
[59] ZHU Y Z, LIANG H, LIU X M, et al. Regulation of macrophage polarization through surface topography design to facilitate implant-to-bone osteointegration[J]. Science Advances, 2021, 7(14): eabf6654.
[60] ZHAO Q, WANG J, WANG Y, et al. A stage-specific cell-manipulation platform for inducing endothelialization on demand[J]. National Science Review, 2020, 7(3): 629-643.
[61] ZHENG X, XIN L, LUO Y, et al. Near-Infrared-Triggered Dynamic Surface Topography for Sequential Modulation of Macrophage Phenotypes[J]. ACS Applied Materials & Interfaces, 2019, 11(46): 43689-43697.
[62] HOTCHKISS K M, CLARK N M, OLIVARES N R. Macrophage response to hydrophilic biomaterials regulates MSC recruitment and T-helper cell populations[J]. Biomaterials, 2018, 182: 202-215.
[63] HOTCHKISS K M, REDDY G B, HYZY S L, et al. Titanium surface characteristics, including topography and wettability, alter macrophage activation[J]. Acta Biomater, 2016, 31: 425-434.
[64] VISALAKSHAN R M, MACGREGOR M N, SASIDHARAN S, et al. Biomaterial surface hydrophobicity-mediated serum protein adsorption and immune responses[J]. ACS Applied Materials & Interfaces, 2019, 11(31): 27615-27623.
[65] HAMLET S, IVANOVSKI S. Inflammatory cytokine response to titanium chemical composition and nanoscale calcium phosphate surface modification[J]. Acta Biomater, 2011, 7(5): 2345-2353.
[66] LEE C H, KIM Y J, JANG J H, et al. Modulating macrophage polarization with divalent cations in nanostructured titanium implant surfaces[J]. Nanotechnology, 2016, 27(8): 085101.
[67] SODHI H, PANITCH A. Glycosaminoglycans in Tissue Engineering: A Review[J]. Biomolecules, 2021, 11(1): 29.
[68] BATOOL F, OZCELIK H, STUTZ C, et al. Modulation of immune-inflammatory responses through surface modifications of biomaterials to promote bone healing and regeneration[J]. Journal of Tissue Engineering, 2021, 12: 20417314211041428.
[69] BRODBECK W G, NAKAYAMA Y, MATSUDA T, et al. Biomaterial surface chemistry dictates adherent monocyte/macrophage cytokine expression in vitro[J]. Cytokine, 2002, 18(6): 311-319.
[70] KIM D, HAN S A, KIM J H, et al. Biomolecular piezoelectric materials: From amino acids to living tissues[J]. Advanced Materials, 2020, 32(14): e1906989.
[71] ZHU P, LAI C, CHENG M, et al. Differently charged P(VDF-TrFE) membranes influence osteogenesis through differential immunomodulatory function of macrophages[J]. Frontiers in Materials, 2022, 8: 790753.
[72] 仲宣树, 刘宗建, 耿雪, et al. 材料表面性质调控细胞黏附[J]. 化学进展, 2022, 34(05): 1153-1165.
[73] WANG F, WANG M, HE Q, et al. Black tantalic oxide submicro-particles coating on PEEK fibers woven into fabrics as artificial ligaments with photothermal antibacterial effect and osteogenic activity for promoting ligament-bone healing[J]. Journal of Materials Science & Technology, 2023, 133: 195-208.
[74] HUANG X, FU Q, DENG Y, et al. Surface roughness of silk fibroin/alginate microspheres for rapid hemostasis in vitro and in vivo[J]. Carbohydrate Polymers, 2021, 253: 117256.
[75] DU F, A W, LIU F, et al. Hydrophilic chitosan/graphene oxide composite sponge for rapid hemostasis and non-rebleeding removal[J]. Carbohydrate Polymers, 2023, 316: 121058.
[76] TANG J W, QUAN H D, YE J H. Photocatalytic properties and photoinduced hydrophilicity of surface-fluorinated TiO2[J]. Chemistry of Materials, 2007, 19(1): 116-122.
[77] WANG S, HE W, WANG H, et al. Hematoma-like dynamic hydrogelation through natural glycopeptide molecular recognition for infected bone fracture repair[J]. Bioactive Materials, 2023, 30: 73-84.
[78] KIZHAKKEDATHU J N, CONWAY E M. Biomaterial and cellular implants: foreign surfaces where immunity and coagulation meet[J]. Blood, 2022, 139(13): 1987-1998.
[79] SHIU H T, LEUNG P C, KO C H. The roles of cellular and molecular components of a hematoma at early stage of bone healing[J]. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12(4): e1911-e1925.
[80] HOSSEINNEJAD A, LUDWIG N, MERSMANN S, et al. Bioactive nanogels mimicking the antithrombogenic nitric oxide-release function of the endothelium[J]. Small, 2023, 19(14): 2205185.
[81] WU S, SHAN Z, XIE L, et al. Mesopore controls the responses of blood clot-immune complex via modulating fibrin network[J]. Advanced Science, 2021, 9(3): 2103608.
[82] SUN Q, SI J, ZHAO L, et al. Direct thrombin inhibitor-bivalirudin improved the hemocompatibility of electrospun polycaprolactone vascular grafts[J]. Composites Part B: Engineering, 2022, 234:109702.
[83] DUDA G N, GEISSLER S, CHECA S, et al. The decisive early phase of bone regeneration[J]. Nature Reviews Rheumatology, 2023, 19(2): 78-95.
[84] FAN Q, BAI J, SHAN H, et al. Implantable blood clot loaded with BMP-2 for regulation of osteoimmunology and enhancement of bone repair[J]. Bioactive Materials, 2021, 6(11): 4014-4026.
[85] GAO A, LIAO Q, XIE L, et al. Tuning the surface immunomodulatory functions of polyetheretherketone for enhanced osseointegration[J]. Biomaterials, 2020, 230: 119642.
[86] SU N, VILLICANA C, BARATI D, et al. Stem cell membrane-coated micro ribbon scaffolds induce regenerative innate and adaptive immune responses in a critical-size cranial bone defect model[J]. Advanced Materials, 2023, 35(10): 2208781.
[87] NEWMAN H, SHIH Y V, VARGHESE S. Resolution of inflammation in bone regeneration: From understandings to therapeutic applications[J]. Biomaterials, 2021, 277: 121114.
[88] ZHANG J, TONG D, SONG H, et al. Osteoimmunity-regulating biomimetically hierarchical scaffold for augmented bone regeneration[J]. Advanced Materials, 2022, 34(36):2202044.
[89] SEMISCH A, HARTWIG A. Copper ions interfere with the reduction of the water-soluble tetrazolium salt-8[J]. Chemical Research in Toxicology, 2014, 27(2): 169-171.
[90] BABUSKA V, KOLAJA DOBRA J, DLUHOS L, et al. Repeated exposure of nanostructured titanium to osteoblasts with respect to peri-implantitis[J]. Materials, 2020, 13(3): 697.
[91] BAHNEY C S, ZONDERVAN R L, ALLISON P, et al. Cellular biology of fracture healing[J]. Journal of Orthopaedic Research, 2018, 37(1): 35-50.

所在学位评定分委会
材料与化工
国内图书分类号
R318.08
来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/789550
专题中国科学院深圳理工大学(筹)联合培养
推荐引用方式
GB/T 7714
贾媛媛. 基于生物材料表界面调控的凝血-免疫级联过程研究[D]. 深圳. 南方科技大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12233307-贾媛媛-中国科学院深圳(4668KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[贾媛媛]的文章
百度学术
百度学术中相似的文章
[贾媛媛]的文章
必应学术
必应学术中相似的文章
[贾媛媛]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。