[1] H. Abdollahpouri, R. Burke, and B. Mobasher. “Controlling Popularity Bias in Learning-to-Rank Recommendation”. In: RecSys. 2017, pp. 42–46.
[2] H. Abdollahpouri, R. Burke, and B. Mobasher. “Managing Popularity Bias in Recommender Systems with Personalized Re-Ranking”. In: FLAIRS. 2019, pp. 413–418.
[3] H. Abdollahpouri, M. Mansoury, R. Burke, and B. Mobasher. “The Connection Between Popularity Bias, Calibration, and Fairness in Recommendation”. In: RecSys. 2020, pp. 726–731.
[4] H. Abdollahpouri, M. Mansoury, R. Burke, B. Mobasher, and E. C. Malthouse. “User-centered Evaluation of Popularity Bias in Recommender Systems”. In: UMAP. 2021, pp. 119–129.
[5] Q. Ai, V. Azizi, X. Chen, and Y. Zhang. “Learning Heterogeneous Knowledge Base Embeddings for Explainable Recommendation”. In: Algorithms 11.9 (2018), p. 137.
[6] Amazon. Deep Graph Library. "https://dgl.ai".
[7] S. An, J. Kim, M. Kim, and J. Park. “No Task Left Behind: MultiTask Learning of Knowledge Tracing and Option Tracing for Better Student Assessment”. In: AAAI. 2022, pp. 4424–4431.
[8] V. W. Anelli, T. D. Noia, E. D. Sciascio, A. Ragone, and J. Trotta. “Local Popularity and Time in top-N Recommendation”. In: ECIR. Vol. 11437. 2019, pp. 861–868.
[9] A. Ariza-Casabona, B. Twardowski, and T. K. Wijaya. “Exploiting Graph Structured Cross-Domain Representation for MultiDomain Recommendation”. In: CoRR abs/2302.05990 (2023).
[10] G. Balloccu, L. Boratto, G. Fenu, and M. Marras. “Post Processing Recommender Systems with Knowledge Graphs for Recency, Popularity, and Diversity of Explanations”. In: SIGIR. 2022, pp. 646– 656.
[11] S. Bonner and F. Vasile. “Causal embeddings for recommendation”. In: RecSys. 2018, pp. 104–112.
[12] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko. “Translating embeddings for modeling multi-relational data”. In: NeurIPS 26 (2013).
[13] L. Bottou, J. Peters, J. Q. Candela, D. X. Charles, M. Chickering, E. Portugaly, D. Ray, P. Y. Simard, and E. Snelson. “Counterfactual reasoning and learning systems: the example of computational advertising”. In: JMLR 14.1 (2013), pp. 3207–3260.
[14] R. Cañamares and P. Castells. “A Probabilistic Reformulation of Memory-Based Collaborative Filtering: Implications on Popularity Biases”. In: SIGIR. 2017, pp. 215–224.
[15] J. Cao, X. Lin, X. Cong, J. Ya, T. Liu, and B. Wang. “DisenCDR: Learning Disentangled Representations for Cross-Domain Recommendation”. In: SIGIR. 2022, pp. 267–277.3
[16] J. Cao, J. Sheng, X. Cong, T. Liu, and B. Wang. “Cross-Domain Recommendation to Cold-Start Users via Variational Information Bottleneck”. In: ICDE. 2022, pp. 2209–2223.
[17] A. J. B. Chaney, B. M. Stewart, and B. E. Engelhardt. “How algorithmic confounding in recommendation systems increases homogeneity and decreases utility”. In: RecSys. 2018, pp. 224–232.
[18] H. Chen, X. Wang, R. Xie, Y. Zhou, and W. Zhu. “Cross-domain Recommendation with Behavioral Importance Perception”. In: WWW. 2023, pp. 1294–1304.
[19] J. Chen, X. Wang, F. Feng, and X. He. “Bias Issues and Solutions in Recommender System: Tutorial on the RecSys 2021”. In: RecSys. 2021, pp. 825–827.
[20] L. Chen, F. Yuan, J. Yang, X. He, C. Li, and M. Yang. “User-Specific Adaptive Fine-Tuning for Cross-Domain Recommendations”. In: TKDE 35.3 (2023), pp. 3239–3252.
[21] L. Chen, H. Zhang, J. Xiao, X. He, S. Pu, and S. Chang. “Counterfactual Critic Multi-Agent Training for Scene Graph Generation”. In: ICCV. 2019, pp. 4612–4622.
[22] X. Chen, Y. Zhang, I. W. Tsang, Y. Pan, and J. Su. “Toward Equivalent Transformation of User Preferences in Cross-Domain Recommendation”. In: TIS 41.1 (2023), 14:1–14:31.
[23] Y. Chen, Y. Wang, Y. Ni, A. Zeng, and L. Lin. “Scenario-aware and Mutual-based approach for Multi-scenario Recommendation in E-Commerce”. In: ICDM Workshops. 2020, pp. 127–135.y
[24] Z. Chen, J. Wu, C. Li, J. Chen, R. Xiao, and B. Zhao. “Co-training Disentangled Domain Adaptation Network for Leveraging Popularity Bias in Recommenders”. In: SIGIR. 2022, pp. 60–69.
[25] Z. Chen, R. Xiao, C. Li, G. Ye, H. Sun, and H. Deng. “ESAM: Discriminative Domain Adaptation with Non-Displayed Items to Improve Long-Tail Performance”. In: SIGIR. 2020, pp. 579–588.
[26] T. Domhan, J. T. Springenberg, and F. Hutter. “Speeding Up Automatic Hyperparameter Optimization of Deep Neural Networks by Extrapolation of Learning Curves”. In: IJCAI. AAAI Press, 2015, pp. 3460–3468.
[27] Y. Dong, N. V. Chawla, and A. Swami. “metapath2vec: Scalable Representation Learning for Heterogeneous Networks”. In: SIGKDD. ACM, 2017, pp. 135–144.
[28] S. Fan, J. Zhu, X. Han, C. Shi, L. Hu, B. Ma, and Y. Li. “Metapathguided Heterogeneous Graph Neural Network for Intent Recommendation”. In: SIGKDD. ACM, 2019, pp. 2478–2486.
[29] Y. Fang, Y. Yang, W. Zhang, X. Lin, and X. Cao. “Effective and efficient community search over large heterogeneous information networks”. In: PVLDB 13.6 (2020), pp. 854–867.
[30] F. Feng, W. Huang, X. He, X. Xin, Q. Wang, and T. Chua. “Should Graph Convolution Trust Neighbors? A Simple Causal Inference Method”. In: SIGIR. 2021, pp. 1208–1218.
[31] F. Feng, J. Zhang, X. He, H. Zhang, and T. Chua. “Empowering Language Understanding with Counterfactual Reasoning”. In: ACL/IJCNLP. Vol. ACL/IJCNLP 2021. Findings of ACL. 2021, pp. 2226–2236.5
[32] X. Fu, J. Zhang, Z. Meng, and I. King. “MAGNN: Metapath Aggregated Graph Neural Network for Heterogeneous Graph Embedding”. In: WWW. 2020.
[33] Z. Fu, Y. Xian, S. Geng, G. de Melo, and Y. Zhang. “Popcorn: Human-in-the-loop Popularity Debiasing in Conversational Recommender Systems”. In: CIKM. 2021, pp. 494–503.
[34] A. Gionis, P. Indyk, and R. Motwani. “Similarity Search in High Dimensions via Hashing”. In: VLDB. 1999, pp. 518–529.
[35] N. Goyal, R. Paneri, A. Agarwal, U. Kalani, A. Sancheti, and N. Chhaya. “CaM-Gen: Causally Aware Metric-Guided Text Generation”. In: ACL. 2022, pp. 2047–2060.
[36] A. Gruson, P. Chandar, C. Charbuillet, J. McInerney, S. Hansen, D. Tardieu, and B. Carterette. “Offline Evaluation to Make Decisions About Playlist Recommendation Algorithms”. In: WSDM. ACM, 2019, pp. 420–428.
[37] Q. Guo, F. Zhuang, C. Qin, H. Zhu, X. Xie, H. Xiong, and Q. He. “A survey on knowledge graph-based recommender systems”. In: TKDE (2020).
[38] P. Gupta, A. Sharma, P. Malhotra, L. Vig, and G. Shroff. “CauSeR: Causal Session-based Recommendations for Handling Popularity Bias”. In: CIKM. 2021, pp. 3048–3052.
[39] Z. Han, F. Xu, J. Shi, Y. Shang, H. Ma, P. Hui, and Y. Li. “Genetic Meta-Structure Search for Recommendation on Heterogeneous Information Network”. In: CIKM. 2020, pp. 455–464.
[40] Z. Han, M. U. Anwaar, S. Arumugaswamy, T. Weber, T. Qiu, H. Shen, Y. Liu, and M. Kleinsteuber. “Metapathand Entityware eyGraph Neural Network for Recommendation”. In: CoRR abs/2010.11793(2020).
[41] Z. Han, X. Zheng, C. Chen, W. Cheng, and Y. Yao. “Intra and Inter Domain HyperGraph Convolutional Network for Cross-Domain Recommendation”. In: WWW. 2023, pp. 449–459.
[42] Q. Hao, Q. Xu, Z. Yang, and Q. Huang. “Learning Unified Embeddings for Recommendation via Meta-path Semantics”. In: MM. ACM, 2021, pp. 3909–3917.
[43] X. Hao, Y. Liu, R. Xie, K. Ge, L. Tang, X. Zhang, and L. Lin. “Adversarial Feature Translation for Multi-domain Recommendation”. In: SIGKDD. 2021, pp. 2964–2973.
[44] R. He, A. Ravula, B. Kanagal, and J. Ainslie. “RealFormer: Transformer Likes Residual Attention”. In: ACL/IJCNLP. Vol. ACL/IJCNLP 2021. 2021, pp. 929–943.
[45] X. He, K. Deng, X. Wang, Y. Li, Y. Zhang, and M. Wang. “LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation”. In: SIGIR. 2020, pp. 639–648.
[46] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T. Chua. “Neural Collaborative Filtering”. In: WWW. 2017, pp. 173–182.
[47] S. Hochreiter and J. Schmidhuber. “Long short-term memory”. In: Neural computation 9.8 (1997), pp. 1735–1780.
[48] M. Höfler. “Causal inference based on counterfactuals”. In: BMC Medical Research Methodology 5.1 (2005), pp. 1–12.
[49] B. Hu, C. Shi, W. X. Zhao, and P. S. Yu. “Leveraging meta-path based context for top-n recommendation with a neural co-attention model”. In: SIGKDD. 2018, pp. 1531–1540.7
[50] J. Huang, W. X. Zhao, H. Dou, J. Wen, and E. Y. Chang. “Improving Sequential Recommendation with Knowledge-Enhanced Memory Networks”. In: SIGIR. ACM, 2018, pp. 505–514.
[51] X. Huang, Q. Fang, S. Qian, J. Sang, Y. Li, and C. Xu. “Explainable Interaction-driven User Modeling over Knowledge Graph for Sequential Recommendation”. In: MM. ACM, 2019, pp. 548–556.
[52] Z. Huang, Y. Zheng, R. Cheng, Y. Sun, N. Mamoulis, and X. Li. “Meta structure: Computing relevance in large heterogeneous information networks”. In: SIGKDD. 2016, pp. 1595–1604.
[53] P. J. Huber. “Robust Estimation of a Location Parameter”. In: Ann. Math. Stat. 35.1 (1964), pp. 73–101.
[54] A. Javaloy and I. Valera. “RotoGrad: Gradient Homogenization in Multitask Learning”. In: ICLR. 2022.
[55] H. Ji, J. Zhu, X. Wang, C. Shi, B. Wang, X. Tan, Y. Li, and S. He. “Who You Would Like to Share With? A Study of Share Recommendation in Social E-commerce”. In: AAAI. AAAI Press, 2021, pp. 232–239.
[56] Y. Ji, A. Sun, J. Zhang, and C. Li. “A Re-visit of the Popularity Baseline in Recommender Systems”. In: SIGIR. 2020, pp. 1749– 1752.
[57] Y. Jiang, Q. Li, H. Zhu, J. Yu, J. Li, Z. Xu, H. Dong, and B. Zheng. “Adaptive Domain Interest Network for Multi-domain Recommendation”. In: CIKM. 2022, pp. 3212–3221.
[58] T. Kamishima, S. Akaho, H. Asoh, and J. Sakuma. “Correcting Popularity Bias by Enhancing Recommendation Neutrality”. In: RecSys. Vol. 1247. 2014.y
[59] W.-C. Kang and J. McAuley. “Candidate Generation with Binary Codes for Large-Scale Top-N Recommendation”. In: CIKM. 2019, pp. 1523–1532.
[60] D. P. Kingma and J. Ba. “Adam: A Method for Stochastic Optimization”. In: ICLR. 2015.
[61] T. N. Kipf and M. Welling. “Semi-Supervised Classification with Graph Convolutional Networks”. In: ICLR. 2017.
[62] J. Kitazono, N. Grozavu, N. Rogovschi, T. Omori, and S. Ozawa. “t-Distributed Stochastic Neighbor Embedding with Inhomogeneous Degrees of Freedom”. In: ICONIP. Vol. 9949. 2016, pp. 119– 128.
[63] J. Klicpera, A. Bojchevski, and S. Günnemann. “Predict then Propagate: Graph Neural Networks meet Personalized PageRank”. In: ICLR. 2019.
[64] S. Ko and J. Lee. “User Preference Mining through Collaborative Filtering and Content Based Filtering in Recommender System”. In: EC-Web. Vol. 2455. 2002, pp. 244–253.
[65] Y. Koren, R. Bell, and C. Volinsky. “Matrix Factorization Techniques for Recommender Systems”. In: Computer 42.8 (2009), pp. 30– 37. DOI: 10.1109/MC.2009.263.
[66] D. Kowald, G. Mayr, M. Schedl, and E. Lex. “A Study on Accuracy, Miscalibration, and Popularity Bias in Recommendations”. In: CoRR abs/2303.00400 (2023).9
[67] P. V. S. Kumar, A. Thahsin, M. M, and G. G. “A Heterogeneous Information Network Model for Long Non-Coding RNA Function Prediction”. In: IEEE ACM Trans. Comput. Biol. Bioinform. 19.1 (2022), pp. 255–266.
[68] O. Lesota, A. B. Melchiorre, N. Rekabsaz, S. Brandl, D. Kowald, E. Lex, and M. Schedl. “Analyzing Item Popularity Bias of Music Recommender Systems: Are Different Genders Equally Affected?” In: RecSys. 2021, pp. 601–606.
[69] C.Li,Y.Xie,C.Yu,B.Hu,Z.Li,G.Shu,X.Qie,andD.Niu.“One for All, All for One: Learning and Transferring User Embeddings for Cross-Domain Recommendation”. In: WSDM. 2023, pp. 366– 374.
[70] H. Li, Y. Shao, J. Du, B. Cui, and L. Chen. “An I/O-Efficient Diskbased Graph System for Scalable Second-Order Random Walk of Large Graphs”. In: PVLDB (2022).
[71] H. Li, Y. Wang, Z. Lyu, and J. Shi. “Multi-Task Learning for Recommendation Over Heterogeneous Information Network”. In: TKDE 34.2 (2022), pp. 789–802.
[72] L. Li, K. G. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar. “Hyperband: A Novel Bandit-Based Approach to Hyper-parameter Optimization”. In: JMLR 18 (2017), 185:1–185:52.
[73] P. Li, R. Li, Q. Da, A. Zeng, and L. Zhang. “Improving MultiScenario Learning to Rank in E-commerce by Exploiting Task Relationships in the Label Space”. In: CIKM. 2020, pp. 2605–2612.
[74] X. Li and P. Li. “Rejection Sampling for Weighted Jaccard Similarity Revisited”. In: AAAI. 2021, pp. 4197–4205.y
[75] B. Lin and Y. Zhang. “LibMTL: A Python Library for Multi-Task Learning”. In: arXiv preprint arXiv:2203.14338 (2022).
[76] Y. Lin, Z. Liu, M. Sun, Y. Liu, and X. Zhu. “Learning entity and relation embeddings for knowledge graph completion”. In: AAAI. 2015.
[77] B. Liu, X. Liu, X. Jin, P. Stone, and Q. Liu. “Conflict-Averse Gradient Descent for Multi-task learning”. In: NeurIPS. 2021, pp. 18878– 18890.
[78] F. Liu, Z. Cheng, L. Zhu, Z. Gao, and L. Nie. “Interest-aware Message-Passing GCN for Recommendation”. In: WWW. 2021, pp. 1296– 1305.
[79] J. Liu, W. Huang, T. Li, S. Ji, and J. Zhang. “Cross-Domain Knowledge Graph Chiasmal Embedding for Multi-Domain Item-Item Recommendation”. In: TKDE 35.5 (2023), pp. 4621–4633.
[80] J. Liu, X. Li, B. An, Z. Xia, and X. Wang. “Multi-Faceted Hierarchical Multi-Task Learning for Recommender Systems”. In: CIKM. 2022, pp. 3332–3341.
[81] K. Liu, F. Xue, X. He, D. Guo, and R. Hong. “Joint Multi-Grained Popularity-Aware Graph Convolution Collaborative Filtering for Recommendation”. In: TCSS 10.1 (2023), pp. 72–83.
[82] M. Liu, J. Li, G. Li, and P. Pan. “Cross Domain Recommendation via Bi-directional Transfer Graph Collaborative Filtering Networks”. In: CIKM. 2020, pp. 885–894.
[83] S. Liu, Y. Liang, and A. Gitter. “Loss-Balanced Task Weighting to Reduce Negative Transfer in Multi-Task Learning”. In: AAAI. 2019, pp. 9977–9978.
[84] W. Liu, X. Zheng, M. Hu, and C. Chen. “Collaborative Filtering with Attribution Alignment for Review-based Non-overlapped Cross-Domain Recommendation”. In: WWW. 2022, pp. 1181–1190.
[85] L. Luo, Y. Li, B. Gao, S. Tang, S. Wang, J. Li, T. Zhu, J. Liu, Z. Li, B. Zhao, Z. Zheng, and S. Pan. “MAMDR: A Model Agnostic Learning Method for Multi-Domain Recommendation”. In: CoRR abs/2202.12524 (2022).
[86] Q. Lv, M. Ding, Q. Liu, Y. Chen, W. Feng, S. He, C. Zhou, J. Jiang, Y. Dong, and J. Tang. “Are we really making much progress?: Re-visiting, benchmarking and refining heterogeneous graph neural networks”. In: KDD. 2021, pp. 1150–1160.
[87] J. Ma, Z. Zhao, X. Yi, J. Chen, L. Hong, and E. H. Chi. “Modeling Task Relationships in Multi-task Learning with Multi-gate Mixture-of-Experts”. In: SIGKDD. 2018, pp. 1930–1939.
[88] N. Ma, M. Ispir, Y. Li, Y. Yang, Z. Chen, D. Z. Cheng, L. Nie, and K. Barman. “An Online Multi-task Learning Framework for Google Feed Ads Auction Models”. In: SIGKDD. 2022, pp. 3477–3485.
[89] X. Ma, L. Zhao, G. Huang, Z. Wang, Z. Hu, X. Zhu, and K. Gai. “Entire Space Multi-Task Model: An Effective Approach for Estimating Post-Click Conversion Rate”. In: SIGIR. 2018, pp. 1137– 1140.
[90] Y. A. Malkov and D. A. Yashunin. “Efficient and Robust Approximate Nearest Neighbor Search Using Hierarchical Navigable Small World Graphs”. In: TPAMI 42.4 (2020), pp. 824–836. y
[91] C. Meng, R. Cheng, S. Maniu, P. Senellart, and W. Zhang. “Discovering Meta-Paths in Large Heterogeneous Information Networks”. In: WWW. ACM, 2015, pp. 754–764.
[92] I. Misra, A. Shrivastava, A. Gupta, and M. Hebert. “Cross-Stitch Networks for Multi-task Learning”. In: CVPR. 2016, pp. 3994– 4003.
[93] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. “Human-level control through deep reinforcement learning”. In: Nature 518.7540 (2015), pp. 529–533.
[94] J. Ni. Amazon review data. "https://nijianmo.github.io/amazon/ index.html".
[95] W. Ning, R. Cheng, J. Shen, N. A. H. Haldar, B. Kao, X. Yan, N. Huo, W. K. Lam, T. Li, and B. Tang. “Automatic Meta-Path Discovery for Effective Graph-Based Recommendation”. In: CIKM. 2022, pp. 1563–1572.
[96] W. Ning, R. Cheng, X. Yan, B. Kao, N. Huo, N. A. H. Haldar, and B. Tang. “Debiasing Recommendation with Popular Popularity”. In: WWW. 2024.
[97] W. Ning, X. Yan, W. Liu, R. Cheng, R. Zhang, and B. Tang. “Multidomain Recommendation with Embedding Disentangling and Domain Alignment”. In: CIKM. 2023.
[98] X. Niu, B. Li, C. Li, J. Tan, R. Xiao, and H. Deng. “Heterogeneous Graph Augmented Multi-Scenario Sharing Recommendation with Tree-Guided Expert Networks”. In: WSDM. 2021, pp. 1038– 1046.3
[99] Y. Niu, K. Tang, H. Zhang, Z. Lu, X. Hua, and J. Wen. “Counter-factual VQA: A Cause-Effect Look at Language Bias”. In: CVPR. 2021, pp. 12700–12710.
[100] R. Otunba, R. A. Rufai, and J. Lin. “MPR: Multi-Objective Pair-wise Ranking”. In: RecSys. 2017, pp. 170–178.
[101] J. Pearl. Causality. Cambridge University Press, 2009.
[102] C. Qian, F. Feng, L. Wen, C. Ma, and P. Xie. “Counter-factual Inference for Text Classification Debiasing.” In: ACL/IJCNLP. 2021, pp. 5434–5445.
[103] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme. “BPR: Bayesian Personalized Ranking from Implicit Feedback”. In: CoRR abs/1205.2618 (2012).
[104] Y. Rong, W. Huang, T. Xu, and J. Huang. “DropEdge: Towards Deep Graph Convolutional Networks on Node Classification”. In: ICLR. 2020.
[105] H. Sak, A. W. Senior, and F. Beaufays. “Long short-term memory recurrent neural network architectures for large scale acoustic modeling”. In: INTERSPEECH. 2014, pp. 338–342.
[106] I. Sato, Y. Nomura, S. Hanaoka, S. Miki, N. Hayashi, O. Abe, and Y. Masutani. “Managing Computer-Assisted Detection System Based on Transfer Learning with Negative Transfer Inhibition”. In: SIGKDD. 2018, pp. 695–704.
[107] T. Schnabel, A. Swaminathan, A. Singh, N. Chandak, and T. Joachims. “Recommendations as Treatments: Debiasing Learning and Evaluation”. In: ICML. Vol. 48. JMLR Workshop and Conference Proceedings. 2016, pp. 1670–1679.
[108] X. Sheng, L. Zhao, G. Zhou, X. Ding, B. Dai, Q. Luo, S. Yang, J. Lv, C. Zhang, H. Deng, and X. Zhu. “One Model to Serve All: Star Topology Adaptive Recommender for Multi-Domain CTR Prediction”. In: CIKM. 2021, pp. 4104–4113.
[109] B. Shi and T. Weninger. “Mining Interesting Meta-Paths from Complex Heterogeneous Information Networks”. In: ICDM. IEEE Computer Society, 2014, pp. 488–495.
[110] C. Shi, B. Hu, W. X. Zhao, and P. S. Yu. “Heterogeneous Information Network Embedding for Recommendation”. In: TKDE (2018).
[111] T. Standley, A. R. Zamir, D. Chen, L. J. Guibas, J. Malik, and S. Savarese. “Which Tasks Should Be Learned Together in Multitask Learning?” In: ICML. Vol. 119. PMLR, 2020, pp. 9120–9132.
[112] Y. Su, R. Zhang, S. M. Erfani, and J. Gan. “Neural Graph Matching based Collaborative Filtering”. In: SIGIR. 2021, pp. 849–858.
[113] Y. Su, R. Zhang, S. M. Erfani, and Z. Xu. “Detecting Beneficial Feature Interactions for Recommender Systems”. In: AAAI. 2021, pp. 4357–4365.
[114] Y. Su, Y. Zhao, S. M. Erfani, J. Gan, and R. Zhang. “Detecting Arbitrary Order Beneficial Feature Interactions for Recommender Systems”. In: KDD. 2022, pp. 1676–1686.
[115] T. Sun, Y. Shao, X. Li, P. Liu, H. Yan, X. Qiu, and X. Huang. “Learning Sparse Sharing Architectures for Multiple Tasks”. In: AAAI. 2020, pp. 8936–8943.
[116] W. Sun, S. Khenissi, O. Nasraoui, and P. Shafto. “Debiasing the Human-Recommender System Feedback Loop in Collaborative Filtering”. In: WWW. 2019, pp. 645–651
[117] Y. Sun, J. Han, X. Yan, P. S. Yu, and T. Wu. “PathSim: Meta PathBased Top-K Similarity Search in Heterogeneous Information Networks”. In: PVLDB 4.11 (2011), pp. 992–1003.
[118] Z. Sun, J. Yang, J. Zhang, A. Bozzon, L. Huang, and C. Xu. “Recurrent knowledge graph embedding for effective recommendation”. In: RecSys. ACM, 2018, pp. 297–305.
[119] R. S. Sutton and A. G. Barto. “Reinforcement Learning: An Introduction”. In: IEEE Trans. Neural Networks 9.5 (1998), pp. 1054–1054.
[120] H. Tang, J. Liu, M. Zhao, and X. Gong. “Progressive Layered Extraction (PLE): A Novel Multi-Task Learning (MTL) Model for Personalized Recommendations”. In: RecSys. 2020, pp. 269–278.
[121] K. Tang, Y. Niu, J. Huang, J. Shi, and H. Zhang. “Unbiased Scene Graph Generation From Biased Training”. In: CVPR. 2020, pp. 3713–3722.
[122] S. Tang, Q. Li, D. Wang, C. Gao, W. Xiao, D. Zhao, Y. Jiang, Q. Ma, and A. Zhang. “Counterfactual Video Recommendation for Duration Debiasing”. In: SIGKDD. 2023, pp. 4894–4903.
[123] Tianchi. Ad Display/Click Data. "https://tianchi.aliyun.com/dataset/dataDetail?dataId=56".
[124] C. Tu, X. Zeng, H. Wang, Z. Zhang, Z. Liu, M. Sun, B. Zhang, and L. Lin. “A Unified Framework for Community Detection and Network Representation Learning”. In: TKDE 31.6 (2019), pp. 1051–1065. DOI: 10.1109/TKDE.2018.2852958.
[125] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio. “Graph Attention Networks”. In: ICLR. 2018.
[126] G. Wan, B. Du, S. Pan, and G. Haffari. “Reinforcement Learning Based Meta-Path Discovery in Large-Scale Heterogeneous Information Networks”. In: AAAI. AAAI Press, 2020, pp. 6094–6101.
[127] D. Wang, P. Liu, Y. Zheng, X. Qiu, and X.-J. Huang. “Heterogeneous Graph Neural Networks for Extractive Document Summarization”. In: ACL. 2020, pp. 6209–6219.
[128] H. Wang, F. Zhang, X. Xie, and M. Guo. “DKN: Deep KnowledgeAware Network for News Recommendation”. In: WWW. 2018, pp. 1835–1844.
[129] J. Wang, Y. Chen, Z. Wang, and W. Zhao. “Popularity-Enhanced News Recommendation with Multi-View Interest Representation”. In: CIKM. 2021, pp. 1949–1958.
[130] K. Wang, Y. Zhu, H. Liu, T. Zang, C. Wang, and K. Liu. “Interand Intra-Domain Relation-Aware Heterogeneous Graph Convolutional Networks for Cross-Domain Recommendation”. In: DASFAA. Vol. 13246. 2022, pp. 53–68.
[131] L. Wang, M. Zhang, Z. Jia, Q. Li, C. Bao, K. Ma, J. Zhu, and Y. Zhong. “AFEC: Active Forgetting of Negative Transfer in Continual Learning”. In: NeurIPS. 2021, pp. 22379–22391.
[132] W. Wang, F. Feng, X. He, H. Zhang, and T. S. Chua. “Clicks can be Cheating: Counterfactual Recommendation for Mitigating Clickbait Issue”. In: SIGIR. 2021, pp. 1288–1297.
[133] W. Wang, X. Lin, F. Feng, X. He, M. Lin, and T. S. Chua. “Causal Representation Learning for Out-of-Distribution Recommendation”. In: WWW. 2022, pp. 3562–3571.
[134] X. Wang, X. He, Y. Cao, M. Liu, and T.-S. Chua. “KGAT: Knowledge Graph Attention Network for Recommendation”. In: SIGKDD.2019.
[135] X. Wang, X. He, M. Wang, F. Feng, and T. Chua. “Neural GraphCollaborative Filtering”. In: SIGIR. 2019, pp. 165–174.
[136] X. Wang, D. Wang, C. Xu, X. He, Y. Cao, and T. Chua. “Explainable Reasoning over Knowledge Graphs for Recommendation”.In: AAAI. AAAI Press, 2019, pp. 5329–5336.
[137] Y. Wang, H. Guo, B. Chen, W. Liu, Z. Liu, Q. Zhang, Z. He, H.Zheng, W. Yao, M. Zhang, Z. Dong, and R. Tang. “CausalInt: CausalInspired Intervention for Multi-Scenario Recommendation”. In:KDD. 2022, pp. 4090–4099.
[138] Z. Wang, J. Zhang, J. Feng, and Z. Chen. “Knowledge Graph Embedding by Translating on Hyperplanes”. In: AAAI. 2014, pp. 1112–1119.
[139] T. Wei, F. Feng, J. Chen, Z. Wu, J. Yi, and X. He. “Model-AgnosticCounterfactual Reasoning for Eliminating Popularity Bias in Recommender System”. In: SIGKDD. 2021, pp. 1791–1800.
[140] F. Wu, A. H. S. Jr., T. Zhang, C. Fifty, T. Yu, and K. Q. Weinberger.“Simplifying Graph Convolutional Networks”. In: ICML. Vol. 97.2019, pp. 6861–6871.
[141] H. C. Wu, R. W. P. Luk, K. Wong, and K. Kwok. “InterpretingTF-IDF term weights as making relevance decisions”. In: TIS 26.3(2008), 13:1–13:37.
[142] Y. Wu and X. Huang. “A Gumbel-based Rating Prediction Framework for Imbalanced Recommendation”. In: CIKM. 2022, pp. 2199–2209.
[143] W. Xi, L. Huang, C. Wang, Y. Zheng, and J. Lai. “BPAM: Recommendation Based on BP Neural Network with Attention Mechanism”. In: IJCAI. 2019, pp. 3905–3911.
[144] W. Xiao, J. Houye, S. Chuan, W. Bai, C. Peng, Y. P., and Y. Yanfang.“Heterogeneous Graph Attention Network”. In: WWW (2019).
[145] R. Xie, Q. Liu, L. Wang, S. Liu, B. Zhang, and L. Lin. “ContrastiveCross-domain Recommendation in Matching”. In: SIGKDD. 2022,pp. 4226–4236.
[146] H. Xiong and J. Yan. “BTWalk: Branching Tree Random Walk forMulti-Order Structured Network Embedding”. In: TKDE 34.8 (2022),pp. 3611–3628.
[147] W. Xu, S. Li, M. Ha, X. Guo, Q. Ma, X. Liu, L. Chen, and Z. Zhu.“Neural Node Matching for Multi-Target Cross Domain Recommendation”. In: CoRR abs/2302.05919 (2023).
[148] Z. Xu, P. Wei, S. Liu, W. Zhang, L. Wang, and B. Zheng. “Correlative Preference Transfer with Hierarchical Hypergraph Networkfor Multi-Domain Recommendation”. In: WWW. 2023, pp. 983–991.
[149] G. Xv, C. Lin, H. Li, J. Su, W. Ye, and Y. Chen. “NeutralizingPopularity Bias in Recommendation Models”. In: SIGIR. 2022,pp. 2623–2628.
[150] X. Yang, F. Feng, W. Ji, M. Wang, and T. Chua. “DeconfoundedVideo Moment Retrieval with Causal Intervention”. In: SIGIR.2021, pp. 1–10.
[151] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and J.Leskovec. “Graph Convolutional Neural Networks for Web-ScaleRecommender Systems”. In: KDD. 2018, pp. 974–983.
[152] T. Yu, S. Kumar, A. Gupta, S. Levine, K. Hausman, and C. Finn.“Gradient Surgery for Multi-Task Learning”. In: NeurIPS. 2020.
[153] X. Yu, X. Ren, Y. Sun, B. Sturt, U. Khandelwal, Q. Gu, B. Norick,and J. Han. “Recommendation in heterogeneous information networks with implicit user feedback”. In: RecSys. 2013, pp. 347–350.
[154] D. Zha, K. Lai, Y. Cao, S. Huang, R. Wei, J. Guo, and X. Hu. “RLCard: A Toolkit for Reinforcement Learning in Card Games”. In:CoRR abs/1910.04376 (2019).
[155] F. Zhang, Q. Peng, Y. Wu, Z. Pan, R. Zeng, D. Lin, and Y. Qi.“Multi-Graph based Multi-Scenario Recommendation in Largescale Online Video Services”. In: WWW Companion. 2022, pp. 1167–1175.
[156] F. Zhang, N. J. Yuan, D. Lian, X. Xie, and W. Ma. “Collaborative Knowledge Base Embedding for Recommender Systems”. In:SIGKDD. ACM, 2016, pp. 353–362.
[157] Q. Zhang, X. Zhang, Y. Liu, H. Wang, M. Gao, J. Zhang, and R.Guo. “Debiasing Recommendation by Learning Identifiable Latent Confounders”. In: SIGKDD. 2023, pp. 3353–3363.
[158] R. Zhang, B. D. Trisedya, M. Li, Y. Jiang, and J. Qi. “A benchmarkand comprehensive survey on knowledge graph entity alignmentvia representation learning”. In: VLDB J. 31.5 (2022), pp. 1143–1168.
[159] Y. Zhang, C. Li, I. W. Tsang, H. Xu, L. Duan, H. Yin, W. Li, and J.Shao. “Diverse Preference Augmentation with Multiple Domainsfor Cold-start Recommendations”. In: ICDE. 2022, pp. 2942–2955.
[160] Y. Zhang, F. Feng, X. He, T. Wei, C. Song, G. Ling, and Y. Zhang.“Causal Intervention for Leveraging Popularity Bias in Recommendation”. In: SIGIR. 2021, pp. 11–20.
[161] Y. Zhang, W. Wang, P. Wu, F. Feng, and X. He. “Causal Recommendation: Progresses and Future Directions”. In: WWW. 2022.
[162] Y. Zhang, X. Li, Y. Yu, J. Tang, H. Deng, J. Lu, Y. Zhang, Q. Jiang, Y.Xian, L. Yu, and H. Liu. “Meta-Generator Enhanced Multi-DomainRecommendation”. In: WWW. 2023, pp. 485–489.
[163] Y. Zhang, Q. Ai, X. Chen, and P. Wang. “Learning over KnowledgeBase Embeddings for Recommendation”. In: CoRR abs/1803.06540(2018).
[164] B. Zhao, L. Hu, Z. You, L. Wang, and X. Su. “HINGRL: predicting drug-disease associations with graph representation learning on heterogeneous information networks”. In: Briefings Bioinform.23.1 (2022).
[165] C. Zhao, C. Li, and C. Fu. “Cross-Domain Recommendation viaPreference Propagation GraphNet”. In: CIKM. 2019, pp. 2165–2168.
[166] C. Zhao, H. Zhao, M. HE, J. Zhang, and J. Fan. “Cross-domain recommendation via user interest alignment”. In: WWW. 2023,pp. 887–896.
[167] M. Zhao, L. Wu, Y. Liang, L. Chen, J. Zhang, Q. Deng, K. Wang, X. Shen, T. Lv, and R. Wu. “Investigating Accuracy-Novelty Performance for Graph-based Collaborative Filtering”. In: SIGIR. 2022, pp. 50–59.
[168] X. Zhao, N. Yang, and P. S. Yu. “Multi-Sparse-Domain Collaborative Recommendation via Enhanced Comprehensive Aspect Preference Learning”. In: WSDM. 2022, pp. 1452–1460.
[169] Z. Zhao, J. Chen, S. Zhou, X. He, X. Cao, F. Zhang, and W. Wu. “Popularity Bias Is Not Always Evil: Disentangling Benign and Harmful Bias for Recommendation”. In: TKDE (2021).
[170] J. Zheng, F. Cai, Y. Ling, and H. Chen. “Heterogeneous Graph Neural Networks to Predict What Happen Next”. In: COLING. 2020.
[171] Y. Zheng, C. Gao, X. Li, X. He, Y. Li, and D. Jin. “Disentangling user interest and conformity for recommendation with causal embedding”. In: WWW. 2021, pp. 2980–2991.
[172] Z. Zhong, C. Li, and J. Pang. “Reinforcement Learning Enhanced Heterogeneous Graph Neural Network”. In: CoRR abs/2010.13735 (2020).
[173] F. Zhu, Y. Wang, C. Chen, J. Zhou, L. Li, and G. Liu. “CrossDomain Recommendation: Challenges, Progress, and Prospects”. In: IJCAI. 2021, pp. 4721–4728.
[174] X. Zhu, Y. Zhang, F. Feng, X. Yang, D. Wang, and X. He. “Mitigating Hidden Confounding Effects for Causal Recommendation”. In: CoRR abs/2205.07499 (2022).
[175] Y. Zhu, J. Yi, J. Xie, and Z. Chen. “Deep Causal Reasoning for Recommendations”. In: CoRR abs/2201.02088 (2022).
[176] Y. Zhu, Z. Tang, Y. Liu, F. Zhuang, R. Xie, X. Zhang, L. Lin, and Q. He. “Personalized Transfer of User Preferences for Cross-domain Recommendation”. In: WSDM. 2022, pp. 1507–1515.
[177] Z. Zhu, Y. He, X. Zhao, Y. Zhang, J. Wang, and J. Caverlee. “Popularity-Opportunity Bias in Collaborative Filtering”. In: WSDM. 2021, pp. 85–93
修改评论