中文版 | English
题名

Study on fiber-reinforced polymer bar connectors fully made of carbon/glass fiber composites

姓名
姓名拼音
LU Tianhui
学号
12068031
学位类型
博士
学位专业
机械工程
导师
周利民
导师单位
系统设计与智能制造学院
外机构导师
苏众庆
外机构导师单位
香港理工大学
论文答辩日期
2024-07-06
论文提交日期
2024-07-29
学位授予单位
香港理工大学
学位授予地点
香港
摘要

Fiber reinforced polymer (FRP) material, with superior designability and mechanical performance, shows a great application potential in different industries. Especially after improvement of the surface quality, the unidirectional circular-section FRP bars can effectively replace the steel bar and be utilized in concrete structures, which is however hindered owing to the limited length of the FRP bar and the lack of effective and short connectors. Currently, there is a lack of exploration of the development and improvement of novel FRP connectors for real-world applications. This thesis aims to develop novel FRP connectors with enhanced connecting capacities. The design, manufacturing, testing, and modeling of tubular-, wedge and multi-wedge-shaped connectors are conducted to investigate and improve their mechanical properties. This thesis provides a guideline for development high-performance FRP connectors and reveals their excellent potential for industrial applications.

 

A novel tubular-shaped glass fiber reinforced polymer (GFRP) connector is developed. It outstands the prevailing connectors due to the use of filament winding method, tailoring of the inner surface morphology and its smaller size. This work provides an analytical study to understand the stress state of FRP bars, bonding layer and the connector with complex lay-up. The results show that the FRP bars and connector carry tension and shear forces, while the bonding layer only carries the shear force. The tensile tests of the connectors with different internal surface qualities are conducted. The results illustrate that the connecting capacities and deformation mechanism of the connectors are greatly affected by the inner surface morphology of the connector. This is because of the different shear deformation mechanism of the bonding layer resulting from the different contact surface morphology. Compared with the smooth inner surface connectors, the threaded connectors demonstrate higher connecting capacities and smaller size potential.

 

On the basis of understanding the tubular-shaped connectors, a full carbon/glass fiber wedge-shaped connector with shearing stress-enhanced locking capability is further developed, and proved effective to connect small diameter FRP bars. Quasi-static tension tests and numerical analysis are conducted to investigate their tensile responses and the effect of gradient modulus and wedge dimensions on the connector failure modes, respectively. The results show the deformation mechanisms and connecting capacities of the wedge-shaped connector are closely related to the wedge slope and thread width. By adjusting the threads length in the wedge, the FRP bar crushing failure induced by the stress concentration is effectively avoided.

 

To connect the large-diameter FRP bars, the tubular- and single wedge-shaped connectors may lose their connecting effectiveness. Thereby, a novel multi-wedge-shaped connector for large-diameter FRP bars is developed in this work. The effects of key factors, including the wedge number, the wedge slope and the wedge length distribution on the tensile response of the connector are experimentally and numerically investigated. The results illustrate that the connecting capacities and deformation mechanism of the connectors are closely related to the wedge number and wedge slope distribution, respectively. The wedge length distribution has limited effects on the tensile response. Finally, the mechanical performances of the tubular GFRP connector and the multi-wedge-shaped connector are compared to verify the significance of the multi-wedge-shaped connector. It is found that compared with typical tubular FRP connectors, the multi-wedge-shaped connector not only has the favorable manufacturability and installing methods, but also shows the better connecting efficiency.

 

Overall, this thesis presents that the desired connecting capacities and smaller size can be simultaneously achieved in the developed novel FRP bar connectors fully made of composites. The superiority of the multi-wedge-shaped connectors for connecting large-diameter FRP bars is also highlighted. Moreover, this work provides a qualitative relationship between key factors and the tensile response of the connectors, and forms a guideline for design and manufacturing high-performance FRP connectors.

关键词
语种
英语
培养类别
联合培养
入学年份
2020
学位授予年份
2024-08
参考文献列表

[1] E. Nepomuceno, J. Sena-Cruz, L. Correia and T. D'Antino. Review on the bond behavior and durability of FRP bars to concrete[J]. Construction and Building Materials, 287 (2021) 123042.
[2] C. Kassem, A. S. Farghaly and B. Benmokrane. Evaluation of flexural behavior and serviceability performance of concrete beams reinforced with FRP bars[J]. Journal of Composites for Construction, 15(5) (2011): 682-695.
[3] R. Balendran, T. Rana, T. Maqsood and W. Tang. Application of FRP bars as reinforcement in civil engineering structures[J]. Structural Survey, (2002).
[4] G. Feng, D. Zhu, S. Guo, M. Z. Rahman, et al. A review on mechanical properties and deterioration mechanisms of FRP bars under severe environmental and loading conditions[J]. Cement and Concrete Composites, 134 (2022) 104758.
[5] X. Guo, Z. Jin, C. Xiong, T. Sun, et al. Deterioration of mechanical properties of basalt/carbon hybrid FRP bars in SWSC under seawater corrosive environment[J]. Construction and Building Materials, 317 (2022) 125979.
[6] L. C. Hollaway. A review of the present and future utilisation of FRP composites in the civil infrastructure with reference to their important in-service properties[J]. Construction and Building Materials, 24(12) (2010): 2419-2445.
[7] M. Tazarv and M. S. Saiidi. Seismic design of bridge columns incorporating mechanical bar splices in plastic hinge regions[J]. Engineering Structures, 124 (2016): 507-520.
[8] G. Q. Yuan and N. Zhu. A Review on the Connection of FRP Bars[J]. Applied Mechanics and Materials, 238 (2012): 61-65.
[9] ACI Committee 440. Guide for the design and construction of structural concrete reinforced with fiber-reinforced polymer bars[S]. American Concrete Institute, Farmington Hills, MI, USA, ACI PRC-440.1-15, 2015.
[10] K. Minchenkov, S. Gusev, A. Rogozheva, A. Tronin, et al. Pultrusion of thermoplastic composites with mechanical properties comparable to industrial thermoset profiles[J]. Composites Communications, 44 (2023) 101766.
[11] M. Saafi. Design and fabrication of FRP grids for aerospace and civil engineering applications[J]. Journal of Aerospace Engineering, 13(4) (2000): 144-149.
[12] R. L. Caldwell, M. J. Donough, A. W. Phillips, N. A. St John, et al. Dynamic response of composite materials subjected to low velocity impacts in water: A numerical study[J]. Composites Communications, 44 (2023) 101775.
[13] X. Ao, J. Xiao, J. Hobson, J. de la Vega, et al. Bilayer coating strategy for glass fiber reinforced polymer composites toward superior fire safety and post-fire mechanical properties[J]. Composites Communications, 44 (2023) 101763.
[14] Y. Li, Y. Wei, J. Meng, L. Zhang, et al. Damage evolution characterization of glass fabric composites at cryogenic temperatures via in-situ tensile X-ray computed tomography tests[J]. Composites Communications, 35 (2022) 101326.
[15] Y. Li, W. Li, S. Liu, J. Wu, et al. A micromechanical model for the temperature dependent tensile strength of cross-ply fiber reinforced polymer composites[J]. Composites Communications, 35 (2022) 101333.
[16] S. Li, P. Cheng, S. Ahzi, Y. Peng, et al. Advances in hybrid fibers reinforced polymer-based composites prepared by FDM: a review on mechanical properties and prospects[J]. Composites Communications, (2023) 101592.
[17] Y. Su, L. Xu, P. Zhou, J. Yang, et al. Carbon nanotube-decorated glass fibre bundles for cure self-monitoring and load self-sensing of FRPs[J]. Composites Communications, 27 (2021) 100899.
[18] F. M. Mohee and A. Al-Mayah. Effect of barrel, wedge material and thickness on composite plate anchor performance through analytical, finite element, experimental and 3D prototype investigations[J]. Engineering Structures, 175 (2018): 138-154.
[19] J. Giancaspro, C. Papakonstantinou, M. Nazier and P. Balaguru. Aerospace technology for strengthening of bridges[J]. Construction and Building Materials, 23(2) (2009): 748-757.
[20] G. S. Rao. Design and analysis of FRP composite bolted joints for space structures[J]. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 12(3) (2021): 4569-4577.
[21] H. Zhu, Q. Wang, J. G. Dai, C. Wang, et al. Innovative additional aluminum alloy ribs anchorage for improving the bond reliability of pretensioned CFRP bar: A feasibility study[J]. Composite Structures, 280 (2022).
[22] Q. Wang, H. Zhu, B. Zhang, Y. Tong, et al. Exploratory study on the short- and long-term bond between ribbed CFRP bars and additional aluminum alloy ribs anchorage[J]. Construction and Building Materials, 325 (2022).
[23] G. C. Kahandawa, J. Epaarachchi, H. Wang and K. T. Lau. Use of FBG sensors for SHM in aerospace structures[J]. Photonic Sensors, 2 (2012): 203-214.
[24] M. Naser, R. Hawileh and J. Abdalla. Fiber-reinforced polymer composites in strengthening reinforced concrete structures: A critical review[J]. Engineering Structures, 198 (2019) 109542.
[25] D. K. Rajak, D. D. Pagar, P. L. Menezes and E. Linul. Fiber-reinforced polymer composites: Manufacturing, properties, and applications[J]. Polymers, 11(10) (2019) 1667.
[26] M. A. Karataş and H. Gökkaya. A review on machinability of carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP) composite materials[J]. Defence Technology, 14(4) (2018): 318-326.
[27] T. Sathishkumar, S. Satheeshkumar and J. Naveen. Glass fiber-reinforced polymer composites–a review[J]. Journal of reinforced plastics and composites, 33(13) (2014): 1258-1275.
[28] T. C. Rousakis, A. I. Karabinis and P. D. Kiousis. FRP-confined concrete members: Axial compression experiments and plasticity modelling[J]. Engineering Structures, 29(7) (2007): 1343-1353.
[29] S. Hegde, B. S. Shenoy and K. Chethan. Review on carbon fiber reinforced polymer (CFRP) and their mechanical performance[J]. Materials Today: Proceedings, 19 (2019): 658-662.
[30] M. A. Muflikhun, T. Yokozeki and T. Aoki. The strain performance of thin CFRP-SPCC hybrid laminates for automobile structures[J]. Composite Structures, 220 (2019): 11-18.
[31] S. Alessi, G. Pitarresi and G. Spadaro. Effect of hydrothermal ageing on the thermal and delamination fracture behaviour of CFRP composites[J]. Composites Part B: Engineering, 67 (2014): 145-153.
[32] H. Kodama, S. Okazaki, Y. Jiang, H. Yoden, et al. Thermal influence on surface layer of carbon fiber reinforced plastic (CFRP) in grinding[J]. Precision Engineering, 65 (2020): 53-63.
[33] P. Golewski and T. Sadowski. Description of thermal protection against heat transfer of carbon fiber reinforced plastics (CFRP) coated by stiffened ceramic mat (TBC)[J]. Composite Structures, 229 (2019) 111489.
[34] A. Ahmed, S. Guo, Z. Zhang, C. Shi, et al. A review on durability of fiber reinforced polymer (FRP) bars reinforced seawater sea sand concrete[J]. Construction and Building Materials, 256 (2020) 119484.
[35] S. Solyom and G. L. Balázs. Bond of FRP bars with different surface characteristics[J]. Construction and Building Materials, 264 (2020) 119839.
[36] I. Argatov. Response of a wire rope strand to axial and torsional loads: Asymptotic modeling of the effect of interwire contact deformations[J]. International Journal of Solids and Structures, 48(10) (2011): 1413-1423.
[37] L. De Lorenzis, F. Micelli and A. La Tegola. Influence of specimen size and resin type on the behaviour of FRP-confined concrete cylinders[C]. 1st Int. Conf. on Advanced Polymer Composites for Structural Applications in Construction: Proc., Thomas Telford, Southampton, UK(2002).
[38] M. B. Avila, N. A. Dembsey and C. Dore. Effect of resin type and glass content on the reaction to fire characteristics of typical FRP composites[J]. Composites Part A: Applied Science and Manufacturing, 39(9) (2008): 1503-1511.
[39] P. Ghosh and N. R. Bose. FRP composites based on different types of glass fibers and matrix resins: a comparative study[J]. Journal of applied polymer science, 58(12) (1995): 2177-2184.
[40] T. D'Antino and M. A. Pisani. Tensile and compressive behavior of thermoset and thermoplastic GFRP bars[J]. Construction and Building Materials, 366 (2023) 130104.
[41] J. F. Davalos, Y. Chen and I. Ray. Effect of FRP bar degradation on interface bond with high strength concrete[J]. Cement and Concrete Composites, 30(8) (2008): 722-730.
[42] H. Abdalla. Evaluation of deflection in concrete members reinforced with fibre reinforced polymer (FRP) bars[J]. Composite Structures, 56(1) (2002): 63-71.
[43] A. Rolland, M. Quiertant, A. Khadour, S. Chataigner, et al. Experimental investigations on the bond behavior between concrete and FRP reinforcing bars[J]. Construction and Building Materials, 173 (2018): 136-148.
[44] S. Hussain, M. Z. N. Khan and H. A. Khan. Bond performance of basalt FRP bar against aggressive environment in high-strength concrete with varying bar diameter and bond length[J]. Construction and Building Materials, 349 (2022) 128779.
[45] J.-Y. Lee, A. R. Lim, J. Kim and J. Kim. Bond behaviour of GFRP bars in high-strength concrete: bar diameter effect[J]. Magazine of Concrete Research, 69(11) (2017): 541-554.
[46] M. F. Fahmy, S. A. Ahmed and Z. Wu. Bar surface treatment effect on the bond-slip behavior and mechanism of basalt FRP bars embedded in concrete[J]. Construction and Building Materials, 289 (2021) 122844.
[47] Y. Duo, X. Liu, Y. Liu, T. Tafsirojjaman, et al. Environmental impact on the durability of FRP reinforcing bars[J]. Journal of Building Engineering, 43 (2021) 102909.
[48] L. Xing, S. Sun, K. Mei, Y. Guo, et al. Research progress on short-term mechanical properties of FRP bars and FRP-reinforced concrete beams[J]. Journal of Traffic and Transportation Engineering (English Edition), (2024).
[49] Z. Dong, G. Wu, B. Xu, X. Wang, et al. Bond durability of BFRP bars embedded in concrete under seawater conditions and the long-term bond strength prediction[J]. Materials & Design, 92 (2016): 552-562.
[50] S. Yang, C. Yang, M. Huang, Y. Liu, et al. Study on bond performance between FRP bars and seawater coral aggregate concrete[J]. Construction and Building Materials, 173 (2018): 272-288.
[51] B. Tighiouart, B. Benmokrane and D. Gao. Investigation of bond in concrete member with fibre reinforced polymer (FRP) bars[J]. Construction and Building Materials, 12(8) (1998): 453-462.
[52] Q. Hao, Y. Wang, Z. He and J. Ou. Bond strength of glass fiber reinforced polymer ribbed rebars in normal strength concrete[J]. Construction and Building Materials, 23(2) (2009): 865-871.
[53] E. Henin and G. Morcous. Bond behavior of helically wrapped sand coated deformed Glass Fiber-Reinforced Polymer (GFRP) bars in concrete[J]. Construction and Building Materials, 288 (2021) 123120.
[54] S. Islam, H. M. Afefy, K. Sennah and H. Azimi. Bond characteristics of straight-and headed-end, ribbed-surface, GFRP bars embedded in high-strength concrete[J]. Construction and Building Materials, 83 (2015): 283-298.
[55] J. P. M. Arias, A. Vazquez and M. M. Escobar. Use of sand coating to improve bonding between GFRP bars and concrete[J]. Journal of Composite Materials, 46(18) (2012): 2271-2278.
[56] J. Lu, H. M. Afefy, H. Azimi, K. Sennah, et al. Bond performance of sand-coated and ribbed-surface glass fiber reinforced polymer bars in high-performance concrete[J]. Structures, Elsevier(2021).
[57] Z. Xiong, K. Zhou, Z. Ye, S. He, et al. Bond behavior of basalt fiber reinforced polymer bars in seawater sea-sand concrete exposed to daily temperature variations[J]. Advances in Structural Engineering, 25(9) (2022): 2021-2039.
[58] M. Hassan, B. Benmokrane, A. ElSafty and A. Fam. Bond durability of basalt-fiber-reinforced-polymer (BFRP) bars embedded in concrete in aggressive environments[J]. Composites Part B: Engineering, 106 (2016): 262-272.
[59] R. Sen. Developments in the durability of FRP-concrete bond[J]. Construction and Building Materials, 78 (2015): 112-125.
[60] J. Li, J. Xie, F. Liu and Z. Lu. A critical review and assessment for FRP-concrete bond systems with epoxy resin exposed to chloride environments[J]. Composite Structures, 229 (2019) 111372.
[61] J. G. Dai, H. Yokota, M. Iwanami and E. Kato. Experimental investigation of the influence of moisture on the bond behavior of FRP to concrete interfaces[J]. Journal of Composites for Construction, 14(6) (2010): 834-844.
[62] A. Altalmas, A. El Refai and F. Abed. Bond degradation of basalt fiber-reinforced polymer (BFRP) bars exposed to accelerated aging conditions[J]. Construction and Building Materials, 81 (2015): 162-171.
[63] P. Cousin, M. Hassan, P. Vijay, M. Robert, et al. Chemical resistance of carbon, basalt, and glass fibers used in FRP reinforcing bars[J]. Journal of Composite Materials, 53(26-27) (2019): 3651-3670.
[64] Z. Al-Jaberi, Z. Al-Jazeri and R. Mahdi. Utilizing underwater FRP system for hydraulic structures application[C]. IOP Conference Series: Earth and Environmental Science, IOP Publishing(2022).
[65] Z. P. Bazant and G.-H. Li. Comprehensive database on concrete creep and shrinkage[J]. ACI Materials Journal, 105(6) (2008): 635-637.
[66] P. Malla, S. S. Khedmatgozar Dolati, J. D. Ortiz, A. B. Mehrabi, et al. Feasibility of Conventional Non-Destructive Testing Methods in Detecting Embedded FRP Reinforcements[J]. Applied Sciences, 13(7) (2023) 4399.
[67] Y. Wang, G. Chen, B. Wan, G. Cai, et al. Behavior and modeling of circular large rupture strain FRP-confined ice under axial compression[J]. Journal of Composites for Construction, 25(1) (2021) 04020076.
[68] B. Benmokrane, A. Sanni Bakouregui, H. M. Mohamed, D. Thébeau, et al. Design, construction, and performance of continuously reinforced concrete pavement reinforced with GFRP bars: Case study[J]. Journal of Composites for Construction, 24(5) (2020) 05020004.
[69] S. Mousa, H. M. Mohamed, B. Benmokrane and A. Nanni. Flexural behavior of long-span square reinforced concrete members with uniformly distributed fiber-reinforced polymer bars[J]. ACI STRUCTURAL JOURNAL, (2020).
[70] M. Dehestani and S. Mousavi. Modified steel bar model incorporating bond-slip effects for embedded element method[J]. Construction and Building Materials, 81 (2015): 284-290.
[71] Y. S. Choi, J. G. Kim and K. M. Lee. Corrosion behavior of steel bar embedded in fly ash concrete[J]. Corrosion Science, 48(7) (2006): 1733-1745.
[72] A. A. Almusallam. Effect of degree of corrosion on the properties of reinforcing steel bars[J]. Construction and Building Materials, 15(8) (2001): 361-368.
[73] J. W. Schmidt, A. Bennitz, B. Täljsten, P. Goltermann, et al. Mechanical anchorage of FRP tendons – A literature review[J]. Construction and Building Materials, 32 (2012): 110-121.
[74] A. Bennitz. Mechanical anchorage of prestressed CFRP tendons: theory and tests[J]. Lulea University of Technology, (2008).
[75] E. Y. S. A. a. N. G. Shrive. A new steel anchorage system for post-tensioning applications using carbon fibre reinforced plastic tendons[J]. (1997).
[76] B. Z. Brahim Benmokrane, AdilChennouf. Tensile properties and pullout behaviour of AFRP and CFRP rods for grouted anchor applications[J]. Construction and Building Materials, (2000).
[77] Y. M. Saeed, S. M. Al-Obaidi, E. G. Al-Hasany and F. N. Rad. Evaluation of a new bond-type anchorage system with expansive grout for a single FRP rod[J]. Construction and Building Materials, 261 (2020) 120004.
[78] B. W. Kerstens J G M, Camp J W. Prestressing with carbon composite rods: a numerical method for developing reusable prestressing systems[J]. Structural Journal, (1998).
[79] N. G. S. T.I. Campbell, K.A. Soudki, A. Al-Mayah, J.P. Keatley, and M.M. Reda. Design and evaluation of a wedge-type anchor for fibre reinforced polymer tendons[J]. Canadian Journal of Civil Engineering, (2000).
[80] S. J. W. Bennitz A, Täljsten B. . Failure modes of prestressed CFRP rods in a wedge anchored set-u[J]. Conference on Advanced Composites in Construction: 01/09/2009-03/09/2009 (2009).
[81] E.-G. S. Alsheraida O S. Performance of Modified Wedge Anchorage System for Pre-Stressed FRP Bars[J]. International Journal of Civil and Environmental Engineering, (2015).
[82] S. E.-G. Othman S. Alsheraida. Performance of Modified Wedge Anchorage System for Pre-Stressed FRP Bars " International Journal of Civil and Environmental Engineering, (2016).
[83] B. Benmokrane, B. Zhang, A. Chennouf and R. Masmoudi. Evaluation of aramid and carbon fibre reinforced polymer composite tendons for prestressed ground anchors[J]. Canadian Journal of Civil Engineering, 27(5) (2000): 1031-1045.
[84] B. B. y Burong Zhang, 2 Member, ASCE, and Adil Chennouf 3. Prediction of tensile capacity of bond anchorages for FRP tendons[J]. Journal of Composites for Construction, (2000).
[85] A. Alraie, D. R. Sahoo and V. Matsagar. Development of Optimal Anchor for Basalt Fiber–Reinforced Polymer Rods[J]. Journal of Composites for Construction, 25(3) (2021).
[86] Y. Fang, Z. Fang, L. Feng, Y. Xiang, et al. Bond behavior of an ultra-high performance concrete-filled anchorage for carbon fiber-reinforced polymer tendons under static and impact loads[J]. Engineering Structures, 274 (2023).
[87] Q. Wang, H. Zhu, B. Zhang, Y. Zhao, et al. Bond enhancement for BFRP bar in concrete by using a resin-filled FRP tube anchorage[J]. Structures, 39 (2022): 1107-1117.
[88] C. P. P. Clayton A. Burningham, and Lawrence D. Reaveley. New unibody clamp anchors for posttensioning carbon-fiber-reinforced polymer rods[J]. (2014).
[89] B. Basaran, H. Yaka and I. Kalkan. Engineering plastic gripping mechanism for tension testing of FRP bars[J]. Journal of Composite Materials, 54(28) (2020): 4427-4440.
[90] Y. Ye and Z. Guo. Experimental investigation on the anchorage performance of clamping anchors for carbon fiber reinforced polymer rods[J]. Advanced Science Letters, 4(3) (2011): 922-926.
[91] D. Cai, J. Yin and R. Liu. Experimental and analytical investigation into the stress performance of composite anchors for CFRP tendons[J]. Composites Part B: Engineering, 79 (2015): 530-534.
[92] D. Cai, Z. Xu, J. Yin, R. Liu, et al. A numerical investigation on the performance of composite anchors for CFRP tendons[J]. Construction and Building Materials, 112 (2016): 848-855.
[93] J. Zhou, X. Wang, Z. Peng, Z. Wu, et al. Evaluation of a large-tonnage FRP cable anchor system: Anchorage design and full-scale experiment[J]. Engineering Structures, 251 (2022).
[94] G. P. Terrasi, C. Affolter and M. Barbezat. Numerical Optimization of a Compact and Reusable Pretensioning Anchorage System for CFRP Tendons[J]. Journal of Composites for Construction, 15(2) (2011): 126-135.
[95] H. Heydarinouri, M. Motavalli, A. Nussbaumer and E. Ghafoori. Development of a Mechanical Wedge–Barrel Anchor for CFRP Rods: Static and Fatigue Behaviors[J]. Journal of Composites for Construction, 25(3) (2021).
[96] A. Al-Mayah, K. Soudki and A. Plumtree. Development and Assessment of a New CFRP Rod–Anchor System for Prestressed Concrete[J]. Applied Composite Materials, 13(5) (2006): 321-334.
[97] S. K. Al-Mayah A, Plumtree A. . Novel Anchor System for CFRP Rod: Finite-Element and Mathematical Models[J]. Applied Composite Materials, (2007).
[98] A. Al-Mayah, K. Soudki and A. Plumtree. Simplified Anchor System for CFRP Rods[J]. Journal of Composites for Construction, 17(5) (2013): 584-590.
[99] P. Motwani, N. Perogamvros, S. Taylor and A. Laskar. Performance of industrial wedge-anchors for pre-stressing BFRP bars: Experimental and numerical studies[J]. Composite Structures, 251 (2020).
[100] J. Zhou, X. Wang, Z. Peng, Z. Wu, et al. Failure mechanism and optimization of fiber-reinforced polymer cable-anchor system based on 3D finite element model[J]. Engineering Structures, 243 (2021).
[101] J. Shi, X. Wang, L. Zhang, Z. Wu, et al. Composite-Wedge Anchorage for Fiber-Reinforced Polymer Tendons[J]. Journal of Composites for Construction, 26(2) (2022).
[102] X. Wang, P. Xu, Z. Wu and J. Shi. A novel anchor method for multi-tendon FRP cable: Concept and FE study[J]. Composite Structures, 120 (2015): 552-564.
[103] X. Wang, P. Xu, Z. Wu and J. Shi. A Novel Anchor Method for Multitendon FRP Cable: Manufacturing and Experimental Study[J]. Journal of Composites for Construction, 19(6) (2015).
[104] X. Wang, J. Zhou, L. Ding, J. Song, et al. Static Behavior of Circumferential Stress-Releasing Anchor for Large-Capacity FRP Cable[J]. Journal of Bridge Engineering, 25(1) (2020).
[105] M. Noël and K. Soudki. Fatigue Behavior of GFRP Reinforcing Bars in Air and in Concrete[J]. Journal of Composites for Construction, 18(5) (2014).
[106] G. Xie, Y. Tang, C. M. Wang, S. Li, et al. Experimental study on fatigue performance of adhesively bonded anchorage system for CFRP tendons[J]. Composites Part B: Engineering, 150 (2018): 47-59.
[107] G. Xie, Y. Bian, Q. Feng, C. M. Wang, et al. Experimental study on wedge-bonded anchors for CFRP tendons under cyclic loading[J]. Construction and Building Materials, 236 (2020).
[108] B. Tighiouart, B. Benmokrane and P. Mukhopadhyaya. Bond strength of glass FRP rebar splices in beams under static loading[J]. Construction and Building Materials, 13(7) (1999): 383-392.
[109] B. N. Tehrani, A. S. Farghaly, A. Asadian and B. Benmokrane. A Review on Bond Performance and Splice Behavior of FRP Bars to Concrete[C]. Proceedings of the Canadian Society of Civil Engineering Annual Conference 2021: CSCE21 General Track Volume 2, Springer Nature(2022).
[110] N. Kiani and A. Nanni. Swaged couplers for splicing GFRP reinforcing bars[J]. Construction and Building Materials ,392 (2023) 131885.
[111] 440, A.C., ACI 440.1R-15, Guide for the design and construction of structural concrete reinforced with Fiber-Reinforced Polymer (FRP) bars[S]. (2015)
[112] R. Aly, B. Benmokrane and U. Ebead. Tensile lap splicing of bundled CFRP reinforcing bars in concrete[J]. Journal of Composites for Construction, 10(4) (2006): 287-294.
[113] A. Tabatabaei, A. Eslami, H. M. Mohamed and B. Benmokrane. Strength of compression lap-spliced GFRP bars in concrete columns with different splice lengths[J]. Construction and Building Materials, 182 (2018): 657-669.
[114] Y. Al-Salloum, L. Alaoud, H. Elsanadedy, A. Albidah, et al. Bond performance of GFRP bar-splicing in reinforced concrete beams[J]. Journal of Composites for Construction, 26(2) (2022) 04022006.
[115] M. Rakhshanimehr, S. R. Mousavi, M. R. Esfahani and S. Farahi Shahri. Establishment and experimental validation of an updated predictive equation for the development and lap-spliced length of GFRP bars in concrete[J]. Materials and Structures, 51 (2018): 1-17.
[116] B. Basaran and I. Kalkan. Development length and bond strength equations for FRP bars embedded in concrete[J]. Composite Structures, 251 (2020): 112662.
[117] M. R. Esfahani, M. Rakhshanimehr and S. R. Mousavi. Bond strength of lap-spliced GFRP bars in concrete beams[J]. Journal of Composites for Construction, 17(3) (2013): 314-323.
[118] C. Qiu, P. Feng, Y. Yang, L. Zhu, et al. Joint capacity of bonded sleeve connections for tubular fibre reinforced polymer members[J]. Composite Structures, 163 (2017): 267-279.
[119] M. R. Nafiseh Kiania, and Antonio Nannia. Characterization of GFRP Bars and Couplers for Prestressed Concrete[J]. (2020).
[120] H. Huang, B. Jia, J. Lian and W.-W. Wang. Experimental investigation on the tensile performance of resin-filled steel pipe splices of BFRP bars[J]. Construction and Building Materials, 242 (2020).
[121] A. J. T. M. G. O. L. C. Bank. Durable Fiber Reinforced Polymer Bar Splice Connections for Precast Concrete Structures[J]. COMPOSITES & POLYCON, (2009).
[122] L. Alaoud, Y. Al-Salloum and H. Abbas. Experimental investigation for GFRP rebar couplers for reinforced concrete[J]. Journal of King Saud University - Engineering Sciences, 33(2) (2021): 104-110.
[123] H. Huang, J. Lian, J. Li, B. Jia, et al. Design and Evaluation of a New Resin-Filled GFRP Pipe Connection System for Butt Splicing of FRP Bars[J]. Materials, 14(1) (2020): 161.
[124] B. Jia, C. Zhang, J. Lian, H. Huang, et al. Tensile behavior of FRP bar butt joints built with new FRP sleeves[J]. Structures, 34 (2021): 1124-1134.
[125] D. G. Yuan G, Ma J. 2011. Study of coaxial FRP sleeve/expansion Cement connection of FRP rebers[J]. 18th International Conference On Composite Materials. (2011).
[126] M. S. Alam, M. A. Youssef and M. L. Nehdi. Exploratory investigation on mechanical anchors for connecting SMA bars to steel or FRP bars[J]. Materials and Structures, 43(S1) (2010): 91-107.
[127] S. S. Amirmozafar Benshams, Mohammadzaman Kabir Farzad Hatami, Mohammadreza Khedmati, Mesbah Saybani. Investigate the performance of SMA-FRP composite bars in seismic regions under corrosion conditions[J]. (2016).
[128] H. Zhou, B. Jia, P. Zhang, J. Li, et al. Achieve the effective connection of FRP bars by blocking resistance and adhesive Force: Adhesive-Bolt hybrid joint[J]. Composite Structures, 285 (2022).
[129] T. E. Kenichi Ushijima, Noriaki Kose, and Yoshiaki Yamamoto. Field deployment of carbon-fiber-reinforced polymer in bridge applications[J]. PCI Journal, (2016).
[130] B. Mobasher and A. Pivacek. A filament winding technique for manufacturing cement based cross-ply laminates[J]. Cement and Concrete Composites, 20(5) (1998): 405-415.
[131] J. Zheng and J. Dai. Analytical solution for the full-range pull-out behavior of FRP ground anchors[J]. Construction and Building Materials, 58 (2014): 129-137.
[132] I. Y. Hakeem, Y. O. Özkılıç, A. Bahrami, C. Aksoylu, et al. Crashworthiness performance of filament wound GFRP composite pipes depending on winding angle and number of layers[J]. Case Studies in Construction Materials, 20 (2024) e02683.
[133] J. Teng, Y. Xiang, T. Yu and Z. Fang. Development and mechanical behaviour of ultra-high-performance seawater sea-sand concrete[J]. Advances in Structural Engineering, 22(14) (2019): 3100-3120.
[134] ASTM D7205 / D7205M–06 (2016), Standard Test Method for Tensile Properties of Fiber Reinforced Polymer Matrix Composite Bars [S].
[135] T. Lu, G. Lin, Y. Su, L. Zhou, et al. A full carbon/glass fiber FRP bar connector with shearing stress-enhanced locking capability[J]. Composites Communications, 48 (2024).
[136] A. Al-Mayah, K. A. Soudki and A. Plumtree. Experimental and analytical investigation of a stainless steel anchorage for CFRP prestressing tendons[J]. PCI journal, 46(2) (2001): 88-99.
[137] M. R. L. Xinguo Ning. On the Sliding Friction characteristcis of unidirectional continuous frp composites[J]. Journal of Tribology, (2002).
[138] X. Jin. Research on Preparation and Wear Resistance of Nano-Al2O3 Reinforced PET Composite Materials[J]. A Thesis in Advanced Composite Materials, (2010).
[139] A. Khennane (2013). Filament winding processes in the manufacture of advanced fibre-reinforced polymer (FRP) composites[J]. Advanced fibre-reinforced polymer (FRP) composites for structural applications, Elsevier: 187-206.
[140] J. Xing, P. Geng and T. Yang. Stress and deformation of multiple winding angle hybrid filament-wound thick cylinder under axial loading and internal and external pressure[J]. Composite Structures, 131 (2015): 868-877.
[141] J. Ahmad and J. Y. Sheikh-Ahmad. Nontraditional machining of FRPs[J]. Machining of polymer composites, (2009): 237-291.
[142] H. Hernández-Moreno, B. Douchin, F. Collombet, D. Choqueuse, et al. Influence of winding pattern on the mechanical behavior of filament wound composite cylinders under external pressure[J]. Composites Science and Technology, 68(3-4) (2008): 1015-1024.
[143] A. l. o. o. panelP.MertinyF.Ellyin. Influence of the filament winding tension on physical and mechanical properties of reinforced composites[J]. Composites Part A: Applied Science and Manufacturing, (2002).
[144] T. Y. Tianhui Lu, Guan Lin, Yiyin Su, Limin Zhou and Zhongqing Su. A Full Carbon/Glass Fiber FRP Bar Connectorwith Shearing Stress-enhanced Locking Capability[J]. Composites Communications, (2023).
[145] M. Zhang, K. Sisomphon, T. S. Ng and D. J. Sun. Effect of superplasticizers on workability retention and initial setting time of cement pastes[J]. Construction and Building Materials, 24(9) (2010): 1700-1707.
[146] S. Aggoun, M. Cheikh-Zouaoui, N. Chikh and R. Duval. Effect of some admixtures on the setting time and strength evolution of cement pastes at early ages[J]. Construction and Building Materials, 22(2) (2008): 106-110.
[147] ASTM D695-15, Standard Test Method for Compressive Properties of Rigid Plastics [S].
[148] GB/T 7314-2005, Metallic materials-Compression test method at room temperature [S].
[149] Zheng Lishuang, Liu Yuan, Xie Min, et al. Research on the friction coefficientoffiber reinforcement epoxy resin composites[J]. Drive System Technology, 2017, 31(3): 27-31
[150] Z. Tang, C. Wang and Y. Yu. Failure response of fiber-epoxy unidirectional laminate under transverse tensile/compressive loading using finite-volume micromechanics[J]. Composites Part B: Engineering 79 (2015): 331-341.
[151] M. R. O’Masta, V. S. Deshpande and H. N. G. Wadley. Defect controlled transverse compressive strength of polyethylene fiber laminates[J]. International Journal of Solids and Structures, 52 (2015) :130-149.
[152] J. P. Attwood, S. N. Khaderi, K. Karthikeyan, N. A. Fleck, et al. The out-of-plane compressive response of Dyneemas composites[J]. Journal of the Mechanics and Physics of Solids, 70 (2014): 200-226.
[153] W. Spitzig and O. Richmond. Effect of hydrostatic pressure on the deformation behavior of polyethylene and polycarbonate in tension and in compression[J]. Polymer Engineering & Science, 19(16) (1979): 1129-1139.
[154] Z. Yu, Q. Huang, X. Xie and N. Xiao. Experimental study and failure criterion analysis of plain concrete under combined compression-shear stress[J]. Construction and Building Materials, 179 (2018): 198-206.
[155] H. C. Biscaia, C. Chastre and M. A. G. Silva. Bond-slip model for FRP-to-concrete bonded joints under external compression[J]. Composites Part B: Engineering, 80 (2015): 246-259.
[156] G. Fava, V. Carvelli and M. A. Pisani. Mechanical behaviour modelling of a new anchor system for large diameter GFRP bars[J]. Composites Part B: Engineering, 43(3) (2012): 1397-1404.
[157] C. Li and G. Xian. Design optimization and experimental validation of a novel wedge-shaped bond anchorage system for prestressed CFRP plates[J]. Polymer Testing, 75 (2019): 167-174.
[158] Q. Wang, H. Zhu, B. Zhang, Y. Tong, et al. Anchorage systems for reinforced concrete structures strengthened with fiber-reinforced polymer composites: State-of-the-art review[J]. Journal of reinforced plastics and composites, 39(9-10) (2020): 327-344.
[159] A. Al-Mayah, K. Soudki and A. Plumtree. Mechanical behavior of CFRP rod anchors under tensile loading[J]. Journal of Composites for Construction, 5(2) (2001): 128-135.
[160] T. Y. Tianhui Lu, Limin Zhou and Zhongqing Su. Enhancement of A Wedge-shaped FRP Bar Connector Fully Made of Carbon/Glass Fiber[J]. Composite Structures, (2024).
[161] ASTM D7205-11 (2011). Standard test method for tensile properties of fiber reinforced polymer matrix composite bars[S].
[162] S. W. Tsai and E. M. Wu. A general theory of strength for anisotropic materials[J]. Journal of Composite Materials, 5(1) (1971): 58-80.
[163] G. Lin and S. S. Zhang. Contribution of longitudinal GFRP bars in concrete filled FRP tubular (CFFT) cylinders under monotonic or cyclic axial compression[J]. Engineering Structures, 281 (2023).
[164] A. Plaseied∗ and A. Fatemi. Strain Rate and Temperature Effects on Tensile Properties and Their Representation in Deformation Modeling of Vinyl Ester Polymer[J]. International Journal of Polymeric Materials and Polymeric Biomaterials, 57(5) (2008): 463-479.
[165] L. Almeida-Fernandes, N. Silvestre, J. R. Correia and M. Arruda. Compressive transverse fracture behaviour of pultruded GFRP materials: Experimental study and numerical calibration[J]. Composite Structures 247 (2020).
[166] A. S. Genikomsou, G. P. Balomenos, P. Arczewska and M. A. Polak. Transverse Shear Testing of GFRP Bars with Reduced Cross Sections[J]. Journal of Composites for Construction, 22(5) (2018).
[167] G. Kaklauskas and J. Ghaboussi. Stress-strain relations for cracked tensile concrete from RC beam tests[J]. Journal of Structural Engineering, 127(1) (2001): 64-73.
[168] P. F. Castro and N. J. Carino. Tensile and nondestructive testing of FRP bars[J]. Journal of Composites for Construction, 2(1) (1998): 17-27.
[169] S. V. Kumar and H. V. GangaRao. Fatigue response of concrete decks reinforced with FRP rebars[J]. Journal of Structural Engineering, 124(1) (1998): 11-16.
[170] Y. Yun, Y. Wu and W. C. Tang. Performance of FRP bonding systems under fatigue loading[J]. Engineering Structures, 30(11) (2008): 3129-3140.
[171] J. G. Teng, T. Yu, Y. L. Wong and S. L. Dong. Hybrid FRP–concrete–steel tubular columns: Concept and behavior[J]. Construction and Building Materials, 21(4) (2007): 846-854.
[172] J. Teng, B. Zhang, S. Zhang and B. Fu. Steel-free hybrid reinforcing bars for concrete structures[J]. Advances in Structural Engineering, 21(16) (2018): 2617-2622.
[173] J. Zheng and J. Dai. Prediction of the nonlinear pull-out response of FRP ground anchors using an analytical transfer matrix method[J]. Engineering Structures, 81 (2014): 377-385.

来源库
人工提交
成果类型学位论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/789652
专题工学院_系统设计与智能制造学院
推荐引用方式
GB/T 7714
Lu TH. Study on fiber-reinforced polymer bar connectors fully made of carbon/glass fiber composites[D]. 香港. 香港理工大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可 操作
12068031-陆天惠-系统设计与智能(10524KB)----限制开放--请求全文
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[陆天惠]的文章
百度学术
百度学术中相似的文章
[陆天惠]的文章
必应学术
必应学术中相似的文章
[陆天惠]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。