[1] E. Nepomuceno, J. Sena-Cruz, L. Correia and T. D'Antino. Review on the bond behavior and durability of FRP bars to concrete[J]. Construction and Building Materials, 287 (2021) 123042.
[2] C. Kassem, A. S. Farghaly and B. Benmokrane. Evaluation of flexural behavior and serviceability performance of concrete beams reinforced with FRP bars[J]. Journal of Composites for Construction, 15(5) (2011): 682-695.
[3] R. Balendran, T. Rana, T. Maqsood and W. Tang. Application of FRP bars as reinforcement in civil engineering structures[J]. Structural Survey, (2002).
[4] G. Feng, D. Zhu, S. Guo, M. Z. Rahman, et al. A review on mechanical properties and deterioration mechanisms of FRP bars under severe environmental and loading conditions[J]. Cement and Concrete Composites, 134 (2022) 104758.
[5] X. Guo, Z. Jin, C. Xiong, T. Sun, et al. Deterioration of mechanical properties of basalt/carbon hybrid FRP bars in SWSC under seawater corrosive environment[J]. Construction and Building Materials, 317 (2022) 125979.
[6] L. C. Hollaway. A review of the present and future utilisation of FRP composites in the civil infrastructure with reference to their important in-service properties[J]. Construction and Building Materials, 24(12) (2010): 2419-2445.
[7] M. Tazarv and M. S. Saiidi. Seismic design of bridge columns incorporating mechanical bar splices in plastic hinge regions[J]. Engineering Structures, 124 (2016): 507-520.
[8] G. Q. Yuan and N. Zhu. A Review on the Connection of FRP Bars[J]. Applied Mechanics and Materials, 238 (2012): 61-65.
[9] ACI Committee 440. Guide for the design and construction of structural concrete reinforced with fiber-reinforced polymer bars[S]. American Concrete Institute, Farmington Hills, MI, USA, ACI PRC-440.1-15, 2015.
[10] K. Minchenkov, S. Gusev, A. Rogozheva, A. Tronin, et al. Pultrusion of thermoplastic composites with mechanical properties comparable to industrial thermoset profiles[J]. Composites Communications, 44 (2023) 101766.
[11] M. Saafi. Design and fabrication of FRP grids for aerospace and civil engineering applications[J]. Journal of Aerospace Engineering, 13(4) (2000): 144-149.
[12] R. L. Caldwell, M. J. Donough, A. W. Phillips, N. A. St John, et al. Dynamic response of composite materials subjected to low velocity impacts in water: A numerical study[J]. Composites Communications, 44 (2023) 101775.
[13] X. Ao, J. Xiao, J. Hobson, J. de la Vega, et al. Bilayer coating strategy for glass fiber reinforced polymer composites toward superior fire safety and post-fire mechanical properties[J]. Composites Communications, 44 (2023) 101763.
[14] Y. Li, Y. Wei, J. Meng, L. Zhang, et al. Damage evolution characterization of glass fabric composites at cryogenic temperatures via in-situ tensile X-ray computed tomography tests[J]. Composites Communications, 35 (2022) 101326.
[15] Y. Li, W. Li, S. Liu, J. Wu, et al. A micromechanical model for the temperature dependent tensile strength of cross-ply fiber reinforced polymer composites[J]. Composites Communications, 35 (2022) 101333.
[16] S. Li, P. Cheng, S. Ahzi, Y. Peng, et al. Advances in hybrid fibers reinforced polymer-based composites prepared by FDM: a review on mechanical properties and prospects[J]. Composites Communications, (2023) 101592.
[17] Y. Su, L. Xu, P. Zhou, J. Yang, et al. Carbon nanotube-decorated glass fibre bundles for cure self-monitoring and load self-sensing of FRPs[J]. Composites Communications, 27 (2021) 100899.
[18] F. M. Mohee and A. Al-Mayah. Effect of barrel, wedge material and thickness on composite plate anchor performance through analytical, finite element, experimental and 3D prototype investigations[J]. Engineering Structures, 175 (2018): 138-154.
[19] J. Giancaspro, C. Papakonstantinou, M. Nazier and P. Balaguru. Aerospace technology for strengthening of bridges[J]. Construction and Building Materials, 23(2) (2009): 748-757.
[20] G. S. Rao. Design and analysis of FRP composite bolted joints for space structures[J]. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 12(3) (2021): 4569-4577.
[21] H. Zhu, Q. Wang, J. G. Dai, C. Wang, et al. Innovative additional aluminum alloy ribs anchorage for improving the bond reliability of pretensioned CFRP bar: A feasibility study[J]. Composite Structures, 280 (2022).
[22] Q. Wang, H. Zhu, B. Zhang, Y. Tong, et al. Exploratory study on the short- and long-term bond between ribbed CFRP bars and additional aluminum alloy ribs anchorage[J]. Construction and Building Materials, 325 (2022).
[23] G. C. Kahandawa, J. Epaarachchi, H. Wang and K. T. Lau. Use of FBG sensors for SHM in aerospace structures[J]. Photonic Sensors, 2 (2012): 203-214.
[24] M. Naser, R. Hawileh and J. Abdalla. Fiber-reinforced polymer composites in strengthening reinforced concrete structures: A critical review[J]. Engineering Structures, 198 (2019) 109542.
[25] D. K. Rajak, D. D. Pagar, P. L. Menezes and E. Linul. Fiber-reinforced polymer composites: Manufacturing, properties, and applications[J]. Polymers, 11(10) (2019) 1667.
[26] M. A. Karataş and H. Gökkaya. A review on machinability of carbon fiber reinforced polymer (CFRP) and glass fiber reinforced polymer (GFRP) composite materials[J]. Defence Technology, 14(4) (2018): 318-326.
[27] T. Sathishkumar, S. Satheeshkumar and J. Naveen. Glass fiber-reinforced polymer composites–a review[J]. Journal of reinforced plastics and composites, 33(13) (2014): 1258-1275.
[28] T. C. Rousakis, A. I. Karabinis and P. D. Kiousis. FRP-confined concrete members: Axial compression experiments and plasticity modelling[J]. Engineering Structures, 29(7) (2007): 1343-1353.
[29] S. Hegde, B. S. Shenoy and K. Chethan. Review on carbon fiber reinforced polymer (CFRP) and their mechanical performance[J]. Materials Today: Proceedings, 19 (2019): 658-662.
[30] M. A. Muflikhun, T. Yokozeki and T. Aoki. The strain performance of thin CFRP-SPCC hybrid laminates for automobile structures[J]. Composite Structures, 220 (2019): 11-18.
[31] S. Alessi, G. Pitarresi and G. Spadaro. Effect of hydrothermal ageing on the thermal and delamination fracture behaviour of CFRP composites[J]. Composites Part B: Engineering, 67 (2014): 145-153.
[32] H. Kodama, S. Okazaki, Y. Jiang, H. Yoden, et al. Thermal influence on surface layer of carbon fiber reinforced plastic (CFRP) in grinding[J]. Precision Engineering, 65 (2020): 53-63.
[33] P. Golewski and T. Sadowski. Description of thermal protection against heat transfer of carbon fiber reinforced plastics (CFRP) coated by stiffened ceramic mat (TBC)[J]. Composite Structures, 229 (2019) 111489.
[34] A. Ahmed, S. Guo, Z. Zhang, C. Shi, et al. A review on durability of fiber reinforced polymer (FRP) bars reinforced seawater sea sand concrete[J]. Construction and Building Materials, 256 (2020) 119484.
[35] S. Solyom and G. L. Balázs. Bond of FRP bars with different surface characteristics[J]. Construction and Building Materials, 264 (2020) 119839.
[36] I. Argatov. Response of a wire rope strand to axial and torsional loads: Asymptotic modeling of the effect of interwire contact deformations[J]. International Journal of Solids and Structures, 48(10) (2011): 1413-1423.
[37] L. De Lorenzis, F. Micelli and A. La Tegola. Influence of specimen size and resin type on the behaviour of FRP-confined concrete cylinders[C]. 1st Int. Conf. on Advanced Polymer Composites for Structural Applications in Construction: Proc., Thomas Telford, Southampton, UK(2002).
[38] M. B. Avila, N. A. Dembsey and C. Dore. Effect of resin type and glass content on the reaction to fire characteristics of typical FRP composites[J]. Composites Part A: Applied Science and Manufacturing, 39(9) (2008): 1503-1511.
[39] P. Ghosh and N. R. Bose. FRP composites based on different types of glass fibers and matrix resins: a comparative study[J]. Journal of applied polymer science, 58(12) (1995): 2177-2184.
[40] T. D'Antino and M. A. Pisani. Tensile and compressive behavior of thermoset and thermoplastic GFRP bars[J]. Construction and Building Materials, 366 (2023) 130104.
[41] J. F. Davalos, Y. Chen and I. Ray. Effect of FRP bar degradation on interface bond with high strength concrete[J]. Cement and Concrete Composites, 30(8) (2008): 722-730.
[42] H. Abdalla. Evaluation of deflection in concrete members reinforced with fibre reinforced polymer (FRP) bars[J]. Composite Structures, 56(1) (2002): 63-71.
[43] A. Rolland, M. Quiertant, A. Khadour, S. Chataigner, et al. Experimental investigations on the bond behavior between concrete and FRP reinforcing bars[J]. Construction and Building Materials, 173 (2018): 136-148.
[44] S. Hussain, M. Z. N. Khan and H. A. Khan. Bond performance of basalt FRP bar against aggressive environment in high-strength concrete with varying bar diameter and bond length[J]. Construction and Building Materials, 349 (2022) 128779.
[45] J.-Y. Lee, A. R. Lim, J. Kim and J. Kim. Bond behaviour of GFRP bars in high-strength concrete: bar diameter effect[J]. Magazine of Concrete Research, 69(11) (2017): 541-554.
[46] M. F. Fahmy, S. A. Ahmed and Z. Wu. Bar surface treatment effect on the bond-slip behavior and mechanism of basalt FRP bars embedded in concrete[J]. Construction and Building Materials, 289 (2021) 122844.
[47] Y. Duo, X. Liu, Y. Liu, T. Tafsirojjaman, et al. Environmental impact on the durability of FRP reinforcing bars[J]. Journal of Building Engineering, 43 (2021) 102909.
[48] L. Xing, S. Sun, K. Mei, Y. Guo, et al. Research progress on short-term mechanical properties of FRP bars and FRP-reinforced concrete beams[J]. Journal of Traffic and Transportation Engineering (English Edition), (2024).
[49] Z. Dong, G. Wu, B. Xu, X. Wang, et al. Bond durability of BFRP bars embedded in concrete under seawater conditions and the long-term bond strength prediction[J]. Materials & Design, 92 (2016): 552-562.
[50] S. Yang, C. Yang, M. Huang, Y. Liu, et al. Study on bond performance between FRP bars and seawater coral aggregate concrete[J]. Construction and Building Materials, 173 (2018): 272-288.
[51] B. Tighiouart, B. Benmokrane and D. Gao. Investigation of bond in concrete member with fibre reinforced polymer (FRP) bars[J]. Construction and Building Materials, 12(8) (1998): 453-462.
[52] Q. Hao, Y. Wang, Z. He and J. Ou. Bond strength of glass fiber reinforced polymer ribbed rebars in normal strength concrete[J]. Construction and Building Materials, 23(2) (2009): 865-871.
[53] E. Henin and G. Morcous. Bond behavior of helically wrapped sand coated deformed Glass Fiber-Reinforced Polymer (GFRP) bars in concrete[J]. Construction and Building Materials, 288 (2021) 123120.
[54] S. Islam, H. M. Afefy, K. Sennah and H. Azimi. Bond characteristics of straight-and headed-end, ribbed-surface, GFRP bars embedded in high-strength concrete[J]. Construction and Building Materials, 83 (2015): 283-298.
[55] J. P. M. Arias, A. Vazquez and M. M. Escobar. Use of sand coating to improve bonding between GFRP bars and concrete[J]. Journal of Composite Materials, 46(18) (2012): 2271-2278.
[56] J. Lu, H. M. Afefy, H. Azimi, K. Sennah, et al. Bond performance of sand-coated and ribbed-surface glass fiber reinforced polymer bars in high-performance concrete[J]. Structures, Elsevier(2021).
[57] Z. Xiong, K. Zhou, Z. Ye, S. He, et al. Bond behavior of basalt fiber reinforced polymer bars in seawater sea-sand concrete exposed to daily temperature variations[J]. Advances in Structural Engineering, 25(9) (2022): 2021-2039.
[58] M. Hassan, B. Benmokrane, A. ElSafty and A. Fam. Bond durability of basalt-fiber-reinforced-polymer (BFRP) bars embedded in concrete in aggressive environments[J]. Composites Part B: Engineering, 106 (2016): 262-272.
[59] R. Sen. Developments in the durability of FRP-concrete bond[J]. Construction and Building Materials, 78 (2015): 112-125.
[60] J. Li, J. Xie, F. Liu and Z. Lu. A critical review and assessment for FRP-concrete bond systems with epoxy resin exposed to chloride environments[J]. Composite Structures, 229 (2019) 111372.
[61] J. G. Dai, H. Yokota, M. Iwanami and E. Kato. Experimental investigation of the influence of moisture on the bond behavior of FRP to concrete interfaces[J]. Journal of Composites for Construction, 14(6) (2010): 834-844.
[62] A. Altalmas, A. El Refai and F. Abed. Bond degradation of basalt fiber-reinforced polymer (BFRP) bars exposed to accelerated aging conditions[J]. Construction and Building Materials, 81 (2015): 162-171.
[63] P. Cousin, M. Hassan, P. Vijay, M. Robert, et al. Chemical resistance of carbon, basalt, and glass fibers used in FRP reinforcing bars[J]. Journal of Composite Materials, 53(26-27) (2019): 3651-3670.
[64] Z. Al-Jaberi, Z. Al-Jazeri and R. Mahdi. Utilizing underwater FRP system for hydraulic structures application[C]. IOP Conference Series: Earth and Environmental Science, IOP Publishing(2022).
[65] Z. P. Bazant and G.-H. Li. Comprehensive database on concrete creep and shrinkage[J]. ACI Materials Journal, 105(6) (2008): 635-637.
[66] P. Malla, S. S. Khedmatgozar Dolati, J. D. Ortiz, A. B. Mehrabi, et al. Feasibility of Conventional Non-Destructive Testing Methods in Detecting Embedded FRP Reinforcements[J]. Applied Sciences, 13(7) (2023) 4399.
[67] Y. Wang, G. Chen, B. Wan, G. Cai, et al. Behavior and modeling of circular large rupture strain FRP-confined ice under axial compression[J]. Journal of Composites for Construction, 25(1) (2021) 04020076.
[68] B. Benmokrane, A. Sanni Bakouregui, H. M. Mohamed, D. Thébeau, et al. Design, construction, and performance of continuously reinforced concrete pavement reinforced with GFRP bars: Case study[J]. Journal of Composites for Construction, 24(5) (2020) 05020004.
[69] S. Mousa, H. M. Mohamed, B. Benmokrane and A. Nanni. Flexural behavior of long-span square reinforced concrete members with uniformly distributed fiber-reinforced polymer bars[J]. ACI STRUCTURAL JOURNAL, (2020).
[70] M. Dehestani and S. Mousavi. Modified steel bar model incorporating bond-slip effects for embedded element method[J]. Construction and Building Materials, 81 (2015): 284-290.
[71] Y. S. Choi, J. G. Kim and K. M. Lee. Corrosion behavior of steel bar embedded in fly ash concrete[J]. Corrosion Science, 48(7) (2006): 1733-1745.
[72] A. A. Almusallam. Effect of degree of corrosion on the properties of reinforcing steel bars[J]. Construction and Building Materials, 15(8) (2001): 361-368.
[73] J. W. Schmidt, A. Bennitz, B. Täljsten, P. Goltermann, et al. Mechanical anchorage of FRP tendons – A literature review[J]. Construction and Building Materials, 32 (2012): 110-121.
[74] A. Bennitz. Mechanical anchorage of prestressed CFRP tendons: theory and tests[J]. Lulea University of Technology, (2008).
[75] E. Y. S. A. a. N. G. Shrive. A new steel anchorage system for post-tensioning applications using carbon fibre reinforced plastic tendons[J]. (1997).
[76] B. Z. Brahim Benmokrane, AdilChennouf. Tensile properties and pullout behaviour of AFRP and CFRP rods for grouted anchor applications[J]. Construction and Building Materials, (2000).
[77] Y. M. Saeed, S. M. Al-Obaidi, E. G. Al-Hasany and F. N. Rad. Evaluation of a new bond-type anchorage system with expansive grout for a single FRP rod[J]. Construction and Building Materials, 261 (2020) 120004.
[78] B. W. Kerstens J G M, Camp J W. Prestressing with carbon composite rods: a numerical method for developing reusable prestressing systems[J]. Structural Journal, (1998).
[79] N. G. S. T.I. Campbell, K.A. Soudki, A. Al-Mayah, J.P. Keatley, and M.M. Reda. Design and evaluation of a wedge-type anchor for fibre reinforced polymer tendons[J]. Canadian Journal of Civil Engineering, (2000).
[80] S. J. W. Bennitz A, Täljsten B. . Failure modes of prestressed CFRP rods in a wedge anchored set-u[J]. Conference on Advanced Composites in Construction: 01/09/2009-03/09/2009 (2009).
[81] E.-G. S. Alsheraida O S. Performance of Modified Wedge Anchorage System for Pre-Stressed FRP Bars[J]. International Journal of Civil and Environmental Engineering, (2015).
[82] S. E.-G. Othman S. Alsheraida. Performance of Modified Wedge Anchorage System for Pre-Stressed FRP Bars " International Journal of Civil and Environmental Engineering, (2016).
[83] B. Benmokrane, B. Zhang, A. Chennouf and R. Masmoudi. Evaluation of aramid and carbon fibre reinforced polymer composite tendons for prestressed ground anchors[J]. Canadian Journal of Civil Engineering, 27(5) (2000): 1031-1045.
[84] B. B. y Burong Zhang, 2 Member, ASCE, and Adil Chennouf 3. Prediction of tensile capacity of bond anchorages for FRP tendons[J]. Journal of Composites for Construction, (2000).
[85] A. Alraie, D. R. Sahoo and V. Matsagar. Development of Optimal Anchor for Basalt Fiber–Reinforced Polymer Rods[J]. Journal of Composites for Construction, 25(3) (2021).
[86] Y. Fang, Z. Fang, L. Feng, Y. Xiang, et al. Bond behavior of an ultra-high performance concrete-filled anchorage for carbon fiber-reinforced polymer tendons under static and impact loads[J]. Engineering Structures, 274 (2023).
[87] Q. Wang, H. Zhu, B. Zhang, Y. Zhao, et al. Bond enhancement for BFRP bar in concrete by using a resin-filled FRP tube anchorage[J]. Structures, 39 (2022): 1107-1117.
[88] C. P. P. Clayton A. Burningham, and Lawrence D. Reaveley. New unibody clamp anchors for posttensioning carbon-fiber-reinforced polymer rods[J]. (2014).
[89] B. Basaran, H. Yaka and I. Kalkan. Engineering plastic gripping mechanism for tension testing of FRP bars[J]. Journal of Composite Materials, 54(28) (2020): 4427-4440.
[90] Y. Ye and Z. Guo. Experimental investigation on the anchorage performance of clamping anchors for carbon fiber reinforced polymer rods[J]. Advanced Science Letters, 4(3) (2011): 922-926.
[91] D. Cai, J. Yin and R. Liu. Experimental and analytical investigation into the stress performance of composite anchors for CFRP tendons[J]. Composites Part B: Engineering, 79 (2015): 530-534.
[92] D. Cai, Z. Xu, J. Yin, R. Liu, et al. A numerical investigation on the performance of composite anchors for CFRP tendons[J]. Construction and Building Materials, 112 (2016): 848-855.
[93] J. Zhou, X. Wang, Z. Peng, Z. Wu, et al. Evaluation of a large-tonnage FRP cable anchor system: Anchorage design and full-scale experiment[J]. Engineering Structures, 251 (2022).
[94] G. P. Terrasi, C. Affolter and M. Barbezat. Numerical Optimization of a Compact and Reusable Pretensioning Anchorage System for CFRP Tendons[J]. Journal of Composites for Construction, 15(2) (2011): 126-135.
[95] H. Heydarinouri, M. Motavalli, A. Nussbaumer and E. Ghafoori. Development of a Mechanical Wedge–Barrel Anchor for CFRP Rods: Static and Fatigue Behaviors[J]. Journal of Composites for Construction, 25(3) (2021).
[96] A. Al-Mayah, K. Soudki and A. Plumtree. Development and Assessment of a New CFRP Rod–Anchor System for Prestressed Concrete[J]. Applied Composite Materials, 13(5) (2006): 321-334.
[97] S. K. Al-Mayah A, Plumtree A. . Novel Anchor System for CFRP Rod: Finite-Element and Mathematical Models[J]. Applied Composite Materials, (2007).
[98] A. Al-Mayah, K. Soudki and A. Plumtree. Simplified Anchor System for CFRP Rods[J]. Journal of Composites for Construction, 17(5) (2013): 584-590.
[99] P. Motwani, N. Perogamvros, S. Taylor and A. Laskar. Performance of industrial wedge-anchors for pre-stressing BFRP bars: Experimental and numerical studies[J]. Composite Structures, 251 (2020).
[100] J. Zhou, X. Wang, Z. Peng, Z. Wu, et al. Failure mechanism and optimization of fiber-reinforced polymer cable-anchor system based on 3D finite element model[J]. Engineering Structures, 243 (2021).
[101] J. Shi, X. Wang, L. Zhang, Z. Wu, et al. Composite-Wedge Anchorage for Fiber-Reinforced Polymer Tendons[J]. Journal of Composites for Construction, 26(2) (2022).
[102] X. Wang, P. Xu, Z. Wu and J. Shi. A novel anchor method for multi-tendon FRP cable: Concept and FE study[J]. Composite Structures, 120 (2015): 552-564.
[103] X. Wang, P. Xu, Z. Wu and J. Shi. A Novel Anchor Method for Multitendon FRP Cable: Manufacturing and Experimental Study[J]. Journal of Composites for Construction, 19(6) (2015).
[104] X. Wang, J. Zhou, L. Ding, J. Song, et al. Static Behavior of Circumferential Stress-Releasing Anchor for Large-Capacity FRP Cable[J]. Journal of Bridge Engineering, 25(1) (2020).
[105] M. Noël and K. Soudki. Fatigue Behavior of GFRP Reinforcing Bars in Air and in Concrete[J]. Journal of Composites for Construction, 18(5) (2014).
[106] G. Xie, Y. Tang, C. M. Wang, S. Li, et al. Experimental study on fatigue performance of adhesively bonded anchorage system for CFRP tendons[J]. Composites Part B: Engineering, 150 (2018): 47-59.
[107] G. Xie, Y. Bian, Q. Feng, C. M. Wang, et al. Experimental study on wedge-bonded anchors for CFRP tendons under cyclic loading[J]. Construction and Building Materials, 236 (2020).
[108] B. Tighiouart, B. Benmokrane and P. Mukhopadhyaya. Bond strength of glass FRP rebar splices in beams under static loading[J]. Construction and Building Materials, 13(7) (1999): 383-392.
[109] B. N. Tehrani, A. S. Farghaly, A. Asadian and B. Benmokrane. A Review on Bond Performance and Splice Behavior of FRP Bars to Concrete[C]. Proceedings of the Canadian Society of Civil Engineering Annual Conference 2021: CSCE21 General Track Volume 2, Springer Nature(2022).
[110] N. Kiani and A. Nanni. Swaged couplers for splicing GFRP reinforcing bars[J]. Construction and Building Materials ,392 (2023) 131885.
[111] 440, A.C., ACI 440.1R-15, Guide for the design and construction of structural concrete reinforced with Fiber-Reinforced Polymer (FRP) bars[S]. (2015)
[112] R. Aly, B. Benmokrane and U. Ebead. Tensile lap splicing of bundled CFRP reinforcing bars in concrete[J]. Journal of Composites for Construction, 10(4) (2006): 287-294.
[113] A. Tabatabaei, A. Eslami, H. M. Mohamed and B. Benmokrane. Strength of compression lap-spliced GFRP bars in concrete columns with different splice lengths[J]. Construction and Building Materials, 182 (2018): 657-669.
[114] Y. Al-Salloum, L. Alaoud, H. Elsanadedy, A. Albidah, et al. Bond performance of GFRP bar-splicing in reinforced concrete beams[J]. Journal of Composites for Construction, 26(2) (2022) 04022006.
[115] M. Rakhshanimehr, S. R. Mousavi, M. R. Esfahani and S. Farahi Shahri. Establishment and experimental validation of an updated predictive equation for the development and lap-spliced length of GFRP bars in concrete[J]. Materials and Structures, 51 (2018): 1-17.
[116] B. Basaran and I. Kalkan. Development length and bond strength equations for FRP bars embedded in concrete[J]. Composite Structures, 251 (2020): 112662.
[117] M. R. Esfahani, M. Rakhshanimehr and S. R. Mousavi. Bond strength of lap-spliced GFRP bars in concrete beams[J]. Journal of Composites for Construction, 17(3) (2013): 314-323.
[118] C. Qiu, P. Feng, Y. Yang, L. Zhu, et al. Joint capacity of bonded sleeve connections for tubular fibre reinforced polymer members[J]. Composite Structures, 163 (2017): 267-279.
[119] M. R. Nafiseh Kiania, and Antonio Nannia. Characterization of GFRP Bars and Couplers for Prestressed Concrete[J]. (2020).
[120] H. Huang, B. Jia, J. Lian and W.-W. Wang. Experimental investigation on the tensile performance of resin-filled steel pipe splices of BFRP bars[J]. Construction and Building Materials, 242 (2020).
[121] A. J. T. M. G. O. L. C. Bank. Durable Fiber Reinforced Polymer Bar Splice Connections for Precast Concrete Structures[J]. COMPOSITES & POLYCON, (2009).
[122] L. Alaoud, Y. Al-Salloum and H. Abbas. Experimental investigation for GFRP rebar couplers for reinforced concrete[J]. Journal of King Saud University - Engineering Sciences, 33(2) (2021): 104-110.
[123] H. Huang, J. Lian, J. Li, B. Jia, et al. Design and Evaluation of a New Resin-Filled GFRP Pipe Connection System for Butt Splicing of FRP Bars[J]. Materials, 14(1) (2020): 161.
[124] B. Jia, C. Zhang, J. Lian, H. Huang, et al. Tensile behavior of FRP bar butt joints built with new FRP sleeves[J]. Structures, 34 (2021): 1124-1134.
[125] D. G. Yuan G, Ma J. 2011. Study of coaxial FRP sleeve/expansion Cement connection of FRP rebers[J]. 18th International Conference On Composite Materials. (2011).
[126] M. S. Alam, M. A. Youssef and M. L. Nehdi. Exploratory investigation on mechanical anchors for connecting SMA bars to steel or FRP bars[J]. Materials and Structures, 43(S1) (2010): 91-107.
[127] S. S. Amirmozafar Benshams, Mohammadzaman Kabir Farzad Hatami, Mohammadreza Khedmati, Mesbah Saybani. Investigate the performance of SMA-FRP composite bars in seismic regions under corrosion conditions[J]. (2016).
[128] H. Zhou, B. Jia, P. Zhang, J. Li, et al. Achieve the effective connection of FRP bars by blocking resistance and adhesive Force: Adhesive-Bolt hybrid joint[J]. Composite Structures, 285 (2022).
[129] T. E. Kenichi Ushijima, Noriaki Kose, and Yoshiaki Yamamoto. Field deployment of carbon-fiber-reinforced polymer in bridge applications[J]. PCI Journal, (2016).
[130] B. Mobasher and A. Pivacek. A filament winding technique for manufacturing cement based cross-ply laminates[J]. Cement and Concrete Composites, 20(5) (1998): 405-415.
[131] J. Zheng and J. Dai. Analytical solution for the full-range pull-out behavior of FRP ground anchors[J]. Construction and Building Materials, 58 (2014): 129-137.
[132] I. Y. Hakeem, Y. O. Özkılıç, A. Bahrami, C. Aksoylu, et al. Crashworthiness performance of filament wound GFRP composite pipes depending on winding angle and number of layers[J]. Case Studies in Construction Materials, 20 (2024) e02683.
[133] J. Teng, Y. Xiang, T. Yu and Z. Fang. Development and mechanical behaviour of ultra-high-performance seawater sea-sand concrete[J]. Advances in Structural Engineering, 22(14) (2019): 3100-3120.
[134] ASTM D7205 / D7205M–06 (2016), Standard Test Method for Tensile Properties of Fiber Reinforced Polymer Matrix Composite Bars [S].
[135] T. Lu, G. Lin, Y. Su, L. Zhou, et al. A full carbon/glass fiber FRP bar connector with shearing stress-enhanced locking capability[J]. Composites Communications, 48 (2024).
[136] A. Al-Mayah, K. A. Soudki and A. Plumtree. Experimental and analytical investigation of a stainless steel anchorage for CFRP prestressing tendons[J]. PCI journal, 46(2) (2001): 88-99.
[137] M. R. L. Xinguo Ning. On the Sliding Friction characteristcis of unidirectional continuous frp composites[J]. Journal of Tribology, (2002).
[138] X. Jin. Research on Preparation and Wear Resistance of Nano-Al2O3 Reinforced PET Composite Materials[J]. A Thesis in Advanced Composite Materials, (2010).
[139] A. Khennane (2013). Filament winding processes in the manufacture of advanced fibre-reinforced polymer (FRP) composites[J]. Advanced fibre-reinforced polymer (FRP) composites for structural applications, Elsevier: 187-206.
[140] J. Xing, P. Geng and T. Yang. Stress and deformation of multiple winding angle hybrid filament-wound thick cylinder under axial loading and internal and external pressure[J]. Composite Structures, 131 (2015): 868-877.
[141] J. Ahmad and J. Y. Sheikh-Ahmad. Nontraditional machining of FRPs[J]. Machining of polymer composites, (2009): 237-291.
[142] H. Hernández-Moreno, B. Douchin, F. Collombet, D. Choqueuse, et al. Influence of winding pattern on the mechanical behavior of filament wound composite cylinders under external pressure[J]. Composites Science and Technology, 68(3-4) (2008): 1015-1024.
[143] A. l. o. o. panelP.MertinyF.Ellyin. Influence of the filament winding tension on physical and mechanical properties of reinforced composites[J]. Composites Part A: Applied Science and Manufacturing, (2002).
[144] T. Y. Tianhui Lu, Guan Lin, Yiyin Su, Limin Zhou and Zhongqing Su. A Full Carbon/Glass Fiber FRP Bar Connectorwith Shearing Stress-enhanced Locking Capability[J]. Composites Communications, (2023).
[145] M. Zhang, K. Sisomphon, T. S. Ng and D. J. Sun. Effect of superplasticizers on workability retention and initial setting time of cement pastes[J]. Construction and Building Materials, 24(9) (2010): 1700-1707.
[146] S. Aggoun, M. Cheikh-Zouaoui, N. Chikh and R. Duval. Effect of some admixtures on the setting time and strength evolution of cement pastes at early ages[J]. Construction and Building Materials, 22(2) (2008): 106-110.
[147] ASTM D695-15, Standard Test Method for Compressive Properties of Rigid Plastics [S].
[148] GB/T 7314-2005, Metallic materials-Compression test method at room temperature [S].
[149] Zheng Lishuang, Liu Yuan, Xie Min, et al. Research on the friction coefficientoffiber reinforcement epoxy resin composites[J]. Drive System Technology, 2017, 31(3): 27-31
[150] Z. Tang, C. Wang and Y. Yu. Failure response of fiber-epoxy unidirectional laminate under transverse tensile/compressive loading using finite-volume micromechanics[J]. Composites Part B: Engineering 79 (2015): 331-341.
[151] M. R. O’Masta, V. S. Deshpande and H. N. G. Wadley. Defect controlled transverse compressive strength of polyethylene fiber laminates[J]. International Journal of Solids and Structures, 52 (2015) :130-149.
[152] J. P. Attwood, S. N. Khaderi, K. Karthikeyan, N. A. Fleck, et al. The out-of-plane compressive response of Dyneemas composites[J]. Journal of the Mechanics and Physics of Solids, 70 (2014): 200-226.
[153] W. Spitzig and O. Richmond. Effect of hydrostatic pressure on the deformation behavior of polyethylene and polycarbonate in tension and in compression[J]. Polymer Engineering & Science, 19(16) (1979): 1129-1139.
[154] Z. Yu, Q. Huang, X. Xie and N. Xiao. Experimental study and failure criterion analysis of plain concrete under combined compression-shear stress[J]. Construction and Building Materials, 179 (2018): 198-206.
[155] H. C. Biscaia, C. Chastre and M. A. G. Silva. Bond-slip model for FRP-to-concrete bonded joints under external compression[J]. Composites Part B: Engineering, 80 (2015): 246-259.
[156] G. Fava, V. Carvelli and M. A. Pisani. Mechanical behaviour modelling of a new anchor system for large diameter GFRP bars[J]. Composites Part B: Engineering, 43(3) (2012): 1397-1404.
[157] C. Li and G. Xian. Design optimization and experimental validation of a novel wedge-shaped bond anchorage system for prestressed CFRP plates[J]. Polymer Testing, 75 (2019): 167-174.
[158] Q. Wang, H. Zhu, B. Zhang, Y. Tong, et al. Anchorage systems for reinforced concrete structures strengthened with fiber-reinforced polymer composites: State-of-the-art review[J]. Journal of reinforced plastics and composites, 39(9-10) (2020): 327-344.
[159] A. Al-Mayah, K. Soudki and A. Plumtree. Mechanical behavior of CFRP rod anchors under tensile loading[J]. Journal of Composites for Construction, 5(2) (2001): 128-135.
[160] T. Y. Tianhui Lu, Limin Zhou and Zhongqing Su. Enhancement of A Wedge-shaped FRP Bar Connector Fully Made of Carbon/Glass Fiber[J]. Composite Structures, (2024).
[161] ASTM D7205-11 (2011). Standard test method for tensile properties of fiber reinforced polymer matrix composite bars[S].
[162] S. W. Tsai and E. M. Wu. A general theory of strength for anisotropic materials[J]. Journal of Composite Materials, 5(1) (1971): 58-80.
[163] G. Lin and S. S. Zhang. Contribution of longitudinal GFRP bars in concrete filled FRP tubular (CFFT) cylinders under monotonic or cyclic axial compression[J]. Engineering Structures, 281 (2023).
[164] A. Plaseied∗ and A. Fatemi. Strain Rate and Temperature Effects on Tensile Properties and Their Representation in Deformation Modeling of Vinyl Ester Polymer[J]. International Journal of Polymeric Materials and Polymeric Biomaterials, 57(5) (2008): 463-479.
[165] L. Almeida-Fernandes, N. Silvestre, J. R. Correia and M. Arruda. Compressive transverse fracture behaviour of pultruded GFRP materials: Experimental study and numerical calibration[J]. Composite Structures 247 (2020).
[166] A. S. Genikomsou, G. P. Balomenos, P. Arczewska and M. A. Polak. Transverse Shear Testing of GFRP Bars with Reduced Cross Sections[J]. Journal of Composites for Construction, 22(5) (2018).
[167] G. Kaklauskas and J. Ghaboussi. Stress-strain relations for cracked tensile concrete from RC beam tests[J]. Journal of Structural Engineering, 127(1) (2001): 64-73.
[168] P. F. Castro and N. J. Carino. Tensile and nondestructive testing of FRP bars[J]. Journal of Composites for Construction, 2(1) (1998): 17-27.
[169] S. V. Kumar and H. V. GangaRao. Fatigue response of concrete decks reinforced with FRP rebars[J]. Journal of Structural Engineering, 124(1) (1998): 11-16.
[170] Y. Yun, Y. Wu and W. C. Tang. Performance of FRP bonding systems under fatigue loading[J]. Engineering Structures, 30(11) (2008): 3129-3140.
[171] J. G. Teng, T. Yu, Y. L. Wong and S. L. Dong. Hybrid FRP–concrete–steel tubular columns: Concept and behavior[J]. Construction and Building Materials, 21(4) (2007): 846-854.
[172] J. Teng, B. Zhang, S. Zhang and B. Fu. Steel-free hybrid reinforcing bars for concrete structures[J]. Advances in Structural Engineering, 21(16) (2018): 2617-2622.
[173] J. Zheng and J. Dai. Prediction of the nonlinear pull-out response of FRP ground anchors using an analytical transfer matrix method[J]. Engineering Structures, 81 (2014): 377-385.
修改评论