题名 | GREEN SYNTHESIS OF MEDICINE AND DEVELOPMENT OF INHIBITORS FOR DRUGGABLE PROTEINS OF SARS-COV- 2 |
姓名 | |
姓名拼音 | CHEN Qishu
|
学号 | 11968015
|
学位类型 | 博士
|
学位专业 | 化学
|
导师 | |
导师单位 | 化学系
|
论文答辩日期 | 2024-01-31
|
论文提交日期 | 2024-08-06
|
学位授予单位 | 香港理工大学
|
学位授予地点 | 中国香港特别行政区
|
摘要 | As human activity continuously develops, especially after the impact of SARS-CoV-2, medicine-related manufacturing and development of new druggable targets for obscure diseases have become a noteworthy segment of the society. Green synthetic methods, especially step and atom economical methodologies towards sustainable and environmentally friendly medicine synthesis have long been the focus of scientists. |
关键词 | |
语种 | 英语
|
培养类别 | 联合培养
|
入学年份 | 2019
|
学位授予年份 | 2024-04
|
参考文献列表 | [(1) Gandeepan, P., et. al. 3d Transition Metals for C–H Activation. Chem. Rev. 2019, 119 (4), 2192-2452.DOI: 10.1021/acs.chemrev.8b00507.(2) Ullmann, F. Ueber eine neue Bildungsweise von Diphenylaminderivaten. 1903, 36 (2), 2382-2384.DOI: https://doi.org/10.1002/cber.190303602174.(3) Goldberg, I. Ueber Phenylirungen bei Gegenwart von Kupfer als Katalysator. Berichte d. D. chem.Gesellschaft. 1906, 39 (2), 1691-1692. DOI: https://doi.org/10.1002/cber.19060390298.(4) Guram, A. S., et. al. Palladium-Catalyzed Aromatic Aminations with in situ GeneratedAminostannanes. J. Am. Chem. Soc. 1994, 116 (17), 7901-7902. DOI: 10.1021/ja00096a059.(5) Paul, F., et. al. Palladium-catalyzed formation of carbon-nitrogen bonds. Reaction intermediates andcatalyst improvements in the hetero cross-coupling of aryl halides and tin amides. J. Am. Chem. Soc.1994, 116 (13), 5969-5970. DOI: 10.1021/ja00092a058.(6) Surry, D. S., et. al. Biaryl Phosphane Ligands in Palladium-Catalyzed Amination. Angew. Chem. Int.Ed. 2008, 47 (34), 6338-6361. DOI: https://doi.org/10.1002/anie.200800497.(7) Hartwig, J. F. Evolution of a Fourth Generation Catalyst for the Amination and Thioetherification ofAryl Halides. Acc. Chem. Res. 2008, 41 (11), 1534-1544. DOI: 10.1021/ar800098p.(8) Kim, H., et. al. Transition-Metal-Mediated Direct C–H Amination of Hydrocarbons with AmineReactants: The Most Desirable but Challenging C–N Bond-Formation Approach. ACS Catal. 2016, 6 (4),2341-2351. DOI: 10.1021/acscatal.6b00293.(9) Wei, Y., et. al. Copper-Catalyzed Direct Alkynylation of Electron-Deficient Polyfluoroarenes withTerminal Alkynes Using O2 as an Oxidant. J. Am. Chem. Soc. 2010, 132 (8), 2522-2523. DOI:10.1021/ja910461e.(10) Wedi, P., et. al. Arene-Limited Nondirected C-H Activation of Arenes. Angew. Chem. Int. Ed. 2018,57 (40), 13016-13027. DOI: https://doi.org/10.1002/anie.201804727.(11) Gu, L., et. al. Gold-Catalyzed Direct Amination of Arenes with Azodicarboxylates. Org. Lett. 2011,13 (7), 1872-1874. DOI: 10.1021/ol200373q.(12) Shrestha, R., et. al. Sterically Controlled, Palladium-Catalyzed Intermolecular Amination of Arenes.J. Am. Chem. Soc. 2013, 135 (23), 8480-8483. DOI: 10.1021/ja4032677.(13) Kuhl, N.; H., e. a. Beyond Directing Groups: Transition-Metal-Catalyzed C-H Activation of SimpleArenes. Angew. Chem. Int. Ed. 2012, 51 (41), 10236-10254. DOI:https://doi.org/10.1002/anie.201203269.(14) Thu, H., et. al. Intermolecular Amidation of Unactivated sp2 and sp3 C−H Bonds via Palladium-Catalyzed Cascade C−H Activation/Nitrene Insertion. J. Am. Chem. Soc. 2006, 128 (28), 9048-9049.DOI: 10.1021/ja062856v.(15) Ng, K., et. al. Pd-Catalyzed Intermolecular ortho-C-H Amidation of Anilides by NNosyloxycarbamate.J. Am. Chem. Soc. 2010, 132 (37), 12862-12864. DOI: 10.1021/ja106364r.(16) Timsina, Y. N., et. al. Palladium-Catalyzed C–H Amination of C(sp2) and C(sp3)–H Bonds:Mechanism and Scope for N-Based Molecule Synthesis. ACS Catal. 2018, 8 (7), 5732-5776. DOI:10.1021/acscatal.8b01168.(17) Xiao, B., et. al. Palladium-Catalyzed Intermolecular Directed C-H Amidation of Aromatic Ketones.J. Am. Chem. Soc. 2011, 133 (5), 1466-1474. DOI: 10.1021/ja108450m.(18) Dick, A. R., et. al. Carbon-Nitrogen Bond-Forming Reactions of Palladacycles with Hypervalent Iodine Reagents. Organometallics 2007, 26 (6), 1365-1370. DOI: 10.1021/om061052l.(19) Ng, K., et. al. A convenient synthesis of anthranilic acids by Pd-catalyzed direct intermolecularortho-C–H amidation of benzoic acids. Chem. Comm. 2012, 48 (95), 11680-11682,10.1039/C2CC36502B. DOI: 10.1039/C2CC36502B.(20) Yoo, E., et. al. Pd-Catalyzed Intermolecular C–H Amination with Alkylamines. J. Am. Chem. Soc.2011, 133 (20), 7652-7655. DOI: 10.1021/ja202563w.(21) Anand, M., et. al. Non-innocent Additives in a Palladium(II)-Catalyzed C–H Bond ActivationReaction: Insights into Multimetallic Active Catalysts. J. Am. Chem. Soc. 2014, 136 (15), 5535-5538.DOI: 10.1021/ja412770h.(22) Anand, M., et. al. Palladium–Silver Cooperativity in an Aryl Amination Reaction through C–HFunctionalization. ACS Catal. 2016, 6 (2), 696-708. DOI: 10.1021/acscatal.5b02639.(23) Zhu, D., et. al. Ligand-Promoted ortho-C-H Amination with Pd Catalysts. Angew. Chem. Int. Ed.2015, 54 (8), 2497-2500. DOI: https://doi.org/10.1002/anie.201408651.(24) Kim, J., et. al. Ruthenium-Catalyzed Direct C-H Amidation of Arenes Including WeaklyCoordinating Aromatic Ketones. Chem. Eur. J. 2013, 19 (23), 7328-7333. DOI:https://doi.org/10.1002/chem.201301025.(25) Shin, Y., et. al. Ru(II)-Catalyzed Selective C–H Amination of Xanthones and Chromones withSulfonyl Azides: Synthesis and Anticancer Evaluation. J. Org. Chem. 2014, 79 (19), 9262-9271. DOI:10.1021/jo501709f.(26) Thirunavukkarasu, V. S., et. al. Expedient C–H Amidations of Heteroaryl Arenes Catalyzed byVersatile Ruthenium(II) Catalysts. Org. Lett. 2013, 15 (13), 3286-3289. DOI: 10.1021/ol401321q.(27) Zhou, X., et. al. Ru-catalyzed direct C–H amidation of 2-arylbenzo[d]thiazoles with sulfonyl azides.Tetrahedron 2014, 70 (38), 6742-6748. DOI: https://doi.org/10.1016/j.tet.2014.07.076.(28) Zhang, L., et. al. Ruthenium-Catalyzed Direct C–H Amidation of Arenes: A Mechanistic Study.Organometallics 2014, 33 (8), 1905-1908. DOI: 10.1021/om500080z.(29) Pan, C., et. al. Ruthenium-Catalyzed C7 Amidation of Indoline C-H Bonds with Sulfonyl Azides.Chem. Eur. J. 2014, 20 (13), 3606-3609. DOI: https://doi.org/10.1002/chem.201304236.(30) Shin, K., et. al. Orthogonal Reactivity of Acyl Azides in C–H Activation: Dichotomy between C–Cand C–N Amidations Based on Catalyst Systems. Org. Lett. 2014, 16 (7), 2022-2025. DOI:10.1021/ol500602b.(31) Shang, M., et. al. Ru(II)-Catalyzed ortho-C–H Amination of Arenes and Heteroarenes at RoomTemperature. Org. Lett. 2013, 15 (20), 5286-5289. DOI: 10.1021/ol402515s.(32) Zhao, H., et. al. Rhodium(III)-Catalyzed Intermolecular N-Chelator-Directed Aromatic C–HAmidation with Amides. Org. Lett. 2013, 15 (19), 5106-5109. DOI: 10.1021/ol4024776.(33) Maiden, T. M. M., et. al. A Mild and Regioselective Route to Functionalized Quinazolines. Chem.Eur. J. 2015, 21 (41), 14342-14346. DOI: https://doi.org/10.1002/chem.201502891.(34) Ng, F., et. al. [RhIII(Cp*)]-Catalyzed ortho-Selective Direct C(sp2)-H Bond Amidation/Aminationof Benzoic Acids by N-Chlorocarbamates and N-Chloromorpholines. A Versatile Synthesis ofFunctionalized Anthranilic Acids. Chem. Eur. J. 2014, 20 (15), 4474-4480. DOI:https://doi.org/10.1002/chem.201304855.(35) Ng, K., et. al. [Cp*RhCl2]2-catalyzed ortho-C–H bond amination of acetophenone o-methyloximeswith primary N-chloroalkylamines: convenient synthesis of N-alkyl-2-acylanilines. Chem. Comm. 2013,49 (63), 7031-7033, 10.1039/C3CC42937G. DOI: 10.1039/C3CC42937G.(36) Grohmann, C., et. al. Rh[III]-Catalyzed C–H Amidation Using Aroyloxycarbamates To Give N-Boc Protected Arylamines. Org. Lett. 2013, 15 (12), 3014-3017. DOI: 10.1021/ol401209f.(37) Shi, J., et. al. Rhodium(III)-catalyzed regioselective C2-amidation of indoles with N-(2,4,6-trichlorobenzoyloxy)amides and its synthetic application to the development of a novel potential PPARγmodulator. Org. Biomol. Chem. 2014, 12 (35), 6831-6836, 10.1039/C4OB00637B. DOI:10.1039/C4OB00637B.(38) Wu, K., et. al. Rh(III)-Catalyzed Intermolecular C–H Amination of 1-Aryl-1H-pyrazol-5(4H)-oneswith Alkylamines. Org. Lett. 2014, 16 (1), 42-45. DOI: 10.1021/ol402965d.(39) Xue, Y., et. al. RhIII-Catalyzed Hydrazine-Directed C(sp2)–H Amination of Phenidones with NAlkyl-O-benzoyl-hydroxylamines. Eur. J. Org. Chem. 2014, 2014 (33), 7481-7488. DOI:https://doi.org/10.1002/ejoc.201402999.(40) Yu, S., et. al. Rhodium(III)-Catalyzed C–H Activation and Amidation of Arenes Using NArenesulfonatedImides as Amidating Reagents. Org. Lett. 2013, 15 (14), 3706-3709. DOI:10.1021/ol401569u.(41) Zhou, B., et. al. Rh(III)-Catalyzed C–H Amidation with N-Hydroxycarbamates: A New Entry to NCarbamate-Protected Arylamines. Organic Letters 2014, 16 (2), 592-595. DOI: 10.1021/ol403477w.(42) Ali, M. A., et. al. [RhCp*Cl2]2-Catalyzed Directed N-Boc Amidation of Arenes “on Water”. OrganicLetters 2015, 17 (6), 1513-1516. DOI: 10.1021/acs.orglett.5b00392.(43) Tang, R., et. al. Rhodium(III)-Catalyzed C(sp2)-H Activation and Electrophilic Amidation with NFluorobenzenesulfonimide.Adv. Synth. Catal. 2013, 355 (5), 869-873. DOI:https://doi.org/10.1002/adsc.201201133.(44) Zhou, B., et. al. Rhodium-Catalyzed Direct Addition of Aryl C–H Bonds to Nitrosobenzenes atRoom Temperature. Org. Lett. 2013, 15 (24), 6302-6305. DOI: 10.1021/ol403187t.(45) Du, J., et. al. Rhodium-Catalyzed Direct Amination of Arenes with Nitrosobenzenes: A New Routeto Diarylamines. Chem. Eur. J. 2014, 20 (19), 5727-5731. DOI: https://doi.org/10.1002/chem.201400221.(46) Kim, J., et. al. Rhodium-Catalyzed Intermolecular Amidation of Arenes with Sulfonyl Azides viaChelation-Assisted C–H Bond Activation. J. Am. Chem. Soc. 2012, 134 (22), 9110-9113. DOI:10.1021/ja303527m.(47) Shi, J., et. al. Rhodium-catalyzed regioselective amidation of indoles with sulfonyl azides via C–Hbond activation. Org. Biomol. Chem. 2012, 10 (45), 8953-8955, 10.1039/C2OB26767E. DOI:10.1039/C2OB26767E.(48) Yu, D., et. al. RhIII/CuII-Cocatalyzed Synthesis of 1H-Indazoles through C–H Amidation and N–NBond Formation. J. Am. Chem. Soc. 2013, 135 (24), 8802-8805. DOI: 10.1021/ja4033555.(49) Wang, H., et. al. Rhodium-Catalyzed Direct ortho C–N Bond Formation of Aromatic AzoCompounds with Azides. J. Org. Chem. 2014, 79 (7), 3279-3288. DOI: 10.1021/jo500412w.(50) Jia, X., et. al. Rhodium-Catalyzed Direct C–H Amidation of Azobenzenes with Sulfonyl Azides: ASynthetic Route to Sterically Hindered ortho-Substituted Aromatic Azo Compounds. J. Org. Chem. 2014,79 (9), 4180-4185. DOI: 10.1021/jo500372d.(51) Ryu, T., et. al. Synthesis of 2-Aryl-2H-benzotrizoles from Azobenzenes and N-Sulfonyl Azidesthrough Sequential Rhodium-Catalyzed Amidation and Oxidation in One Pot. Org. Lett. 2014, 16 (11),2810-2813. DOI: 10.1021/ol501250t.(52) Lian, Y., et. al. Facile Synthesis of Unsymmetrical Acridines and Phenazines by a Rh(III)-CatalyzedAmination/Cyclization/Aromatization Cascade. J. Am. Chem. Soc. 2013, 135 (34), 12548-12551. DOI:10.1021/ja406131a.(53) Yang, W., et. al. Hydroxyamination of aryl C–H bonds with N-hydroxycarbamate by synergistic Rh/Cu catalysis at room temperature. Chem. Comm. 2014, 50 (34), 4420-4422, 10.1039/C3CC49496A.DOI: 10.1039/C3CC49496A.(54) Ryu, J., et. al. Rhodium-Catalyzed Direct C-H Amination of Benzamides with Aryl Azides: ASynthetic Route to Diarylamines. Angew. Chem. Int. Ed. 2012, 51 (39), 9904-9908. DOI:https://doi.org/10.1002/anie.201205723.(55) Shin, K., et. al. Direct C-H Amination of Arenes with Alkyl Azides under Rhodium Catalysis. Angew.Chem. Int. Ed. 2013, 52 (31), 8031-8036. DOI: https://doi.org/10.1002/anie.201302784.(56) Tang, C., et. al. Rh-Catalyzed Diarylamine Synthesis by Intermolecular C–H Amination ofHeteroarylarenes. Eur. J. Org. Chem. 2013, 2013 (33), 7480-7483. DOI:https://doi.org/10.1002/ejoc.201301430.(57) Park, S. H., et. al. Mechanistic Studies of the Rhodium-Catalyzed Direct C–H Amination ReactionUsing Azides as the Nitrogen Source. J. Am. Chem. Soc. 2014, 136 (6), 2492-2502. DOI:10.1021/ja411072a.(58) Park, Y. e. a. Mechanistic Studies on the Rh(III)-Mediated Amido Transfer Process Leading toRobust C–H Amination with a New Type of Amidating Reagent. J. Am. Chem. Soc. 2015, 137 (13), 4534-4542. DOI: 10.1021/jacs.5b01324.(59) Park, Y., et. al. Study of Sustainability and Scalability in the Cp*Rh(III)-Catalyzed Direct C–HAmidation with 1,4,2-Dioxazol-5-ones. Org. Process Res. Dev. 2015, 19 (8), 1024-1029. DOI:10.1021/acs.oprd.5b00164.(60) Kim, H., et. al. Iridium-Catalyzed C–H Amination with Anilines at Room Temperature:Compatibility of Iridacycles with External Oxidants. J. Am. Chem. Soc. 2014, 136 (16), 5904-5907. DOI:10.1021/ja502270y.(61) Lee, D., et. al. Iridium-Catalyzed Direct Arene C–H Bond Amidation with Sulfonyl- and Aryl Azides.J. Org. Chem. 2013, 78 (21), 11102-11109. DOI: 10.1021/jo4019683.(62) Hermann, G. N., et. al. Mechanochemical Iridium(III)-Catalyzed C−H Bond Amidation ofBenzamides with Sulfonyl Azides under Solvent-Free Conditions in a Ball Mill. Angew. Chem. Int. Ed.2016, 55 (11), 3781-3784. DOI: https://doi.org/10.1002/anie.201511689.(63) Hwang, H., et. al. Regioselective Introduction of Heteroatoms at the C-8 Position of Quinoline NOxides:Remote C–H Activation Using N-Oxide as a Stepping Stone. J. Am. Chem. Soc. 2014, 136 (30),10770-10776. DOI: 10.1021/ja5053768.(64) Liu, J. B., et. al. A Computational Mechanistic Study of Amidation of Quinoline N-Oxide: TheRelative Stability of Amido Insertion Intermediates Determines the Regioselectivity. ACS Catal. 2016, 6(4), 2452-2461. DOI: 10.1021/acscatal.5b02938.(65) Kim, J., et. al. Iridium-Catalyzed Direct C-H Amidation with Weakly Coordinating CarbonylDirecting Groups under Mild Conditions. Angew. Chem. Int. Ed. 2014, 53 (8), 2203-2207. DOI:https://doi.org/10.1002/anie.201310544.(66) Lee, D., et. al. Direct C-H Amidation of Benzoic Acids to Introduce meta- and para-Amino Groupsby Tandem Decarboxylation. Chem. Eur. J. 2015, 21 (14), 5364-5368. DOI:https://doi.org/10.1002/chem.201500331.(67) Wei, M. E. Iridium-catalyzed direct ortho-CH amidation of benzoic acids with sulfonylazides.Chinese Chemical Letters 2015, 26 (11), 1336-1340. DOI: https://doi.org/10.1016/j.cclet.2015.08.009.(68) Zhu, B., et. al. Iridium(III)-Catalyzed Direct C-H Sulfonamidation of 2-Aryl-1,2,3-triazole NOxideswith Sulfonyl Azides. Adv. Synth. Catal. 2016, 358 (2), 326-332. DOI:https://doi.org/10.1002/adsc.201501036.(69) Pi, C., et. al. Iridium-Catalyzed Direct C–H Sulfamidation of Aryl Nitrones with Sulfonyl Azides atRoom Temperature. J. Org. Chem. 2015, 80 (15), 7333-7339. DOI: 10.1021/acs.joc.5b01377.(70) Chen, H., et. al. Iridium(III)-Catalyzed Benzylic Amine Directed C-H Sulfonamidation of Areneswith Sulfonyl Azides. ChemCatChem 2015, 7 (5), 743-746. DOI:https://doi.org/10.1002/cctc.201402944.(71) Gwon, D., et. al. Iridium(III)-Catalyzed C-H Amidation of Arylphosphoryls Leading to a PStereogenicCenter. Chem. Eur. J. 2014, 20 (39), 12421-12425. DOI:https://doi.org/10.1002/chem.201404151.(72) Gwon, D., et. al. Dual role of carboxylic acid additive: mechanistic studies and implication for theasymmetric C–H amidation. Tetrahedron 2015, 71 (26), 4504-4511. DOI:https://doi.org/10.1016/j.tet.2015.02.065.(73) Becker, P., et. al. Acylsilanes in Iridium-Catalyzed Directed Amidation Reactions and Formation ofHeterocycles via Siloxycarbenes. Angew. Chem. Int. Ed. 2015, 54 (51), 15493-15496. DOI:https://doi.org/10.1002/anie.201508501.(74) Ryu, J., et. al. Ir(III)-Catalyzed Mild C–H Amidation of Arenes and Alkenes: An Efficient Usage ofAcyl Azides as the Nitrogen Source. J. Am. Chem. Soc. 2013, 135 (34), 12861-12868. DOI:10.1021/ja406383h.(75) Kim, H., et. al. Synthesis of Phosphoramidates: A Facile Approach Based on the C–N BondFormation via Ir-Catalyzed Direct C–H Amidation. Org. Lett. 2014, 16 (20), 5466-5469. DOI:10.1021/ol502722j.(76) Pan, C., et. al. Iridium-Catalyzed Phosphoramidation of Arene C–H Bonds with Phosphoryl Azide.J. Org. Chem. 2014, 79 (19), 9427-9432. DOI: 10.1021/jo5018052.(77) Zhang, T., et. al. Carboxylate-Assisted Iridium-Catalyzed C−H Amination of Arenes withBiologically Relevant Alkyl Azides. Chem. Eur. J. 2016, 22 (9), 2920-2924. DOI:https://doi.org/10.1002/chem.201504880.(78) Shin, K., et. al. Iridium(III)-Catalyzed Direct C-7 Amination of Indolines with Organic Azides. J.Org. Chem. 2014, 79 (24), 12197-12204. DOI: 10.1021/jo5018475.(79) Hou, W., et. al. IrIII-Catalyzed Direct C-7 Amidation of Indolines with Sulfonyl, Acyl, and ArylAzides at Room Temperature. Eur. J. Org. Chem. 2015, 2015 (2), 395-400. DOI:https://doi.org/10.1002/ejoc.201403355.(80) Figg, T. M., et. al. Comparative Investigations of Cp*-Based Group 9 Metal-Catalyzed Direct C–HAmination of Benzamides. Organometallics 2014, 33 (15), 4076-4085. DOI: 10.1021/om5005868.(81) Patel, P., et. al. N-Substituted Hydroxylamines as Synthetically Versatile Amino Sources in theIridium-Catalyzed Mild C–H Amidation Reaction. Org. Lett. 2014, 16 (12), 3328-3331. DOI:10.1021/ol501338h.(82) Sun, B., et. al. Air-Stable Carbonyl(pentamethylcyclopentadienyl)cobalt Diiodide Complex as aPrecursor for Cationic (Pentamethylcyclopentadienyl)cobalt(III) Catalysis: Application for Directed C-2 Selective C-H Amidation of Indoles. Adv. Synth. Catal. 2014, 356 (7), 1491-1495. DOI:https://doi.org/10.1002/adsc.201301110.(83) Patel, P., et. al. Cobalt(III)-Catalyzed C–H Amidation of Arenes using Acetoxycarbamates asConvenient Amino Sources under Mild Conditions. ACS Catal. 2015, 5 (2), 853-858. DOI:10.1021/cs501860b.(84) Park, J., et. al. Comparative Catalytic Activity of Group 9 [Cp*MIII] Complexes: Cobalt-CatalyzedC-H Amidation of Arenes with Dioxazolones as Amidating Reagents. Angew. Chem. Int. Ed. 2015, 54 (47), 14103-14107. DOI: https://doi.org/10.1002/anie.201505820.(85) Liang, Y., et. al. Cationic Cobalt(III)-Catalyzed Aryl and Alkenyl C-H Amidation: A Mild Protocolfor the Modification of Purine Derivatives. Chem. Eur. J. 2015, 21 (46), 16395-16399. DOI:https://doi.org/10.1002/chem.201503533.(86) Mei, R., et. al. Oxazolinyl-Assisted C–H Amidation by Cobalt(III) Catalysis. ACS Catal. 2016, 6(2), 793-797. DOI: 10.1021/acscatal.5b02661.(87) Wang, F., et. al. Co(III)-Catalyzed Synthesis of Quinazolines via C–H Activation of NSulfinyliminesand Benzimidates. Org. Lett. 2016, 18 (6), 1306-1309. DOI: 10.1021/acs.orglett.6b00227.(88) Matsubara, T., et. al. Synthesis of Anthranilic Acid Derivatives through Iron-Catalyzed OrthoAmination of Aromatic Carboxamides with N-Chloroamines. J. Am. Chem. Soc. 2014, 136 (2), 646-649.DOI: 10.1021/ja412521k.(89) Zhang, L. B., et. al. Cobalt(II)-Catalyzed C–H Amination of Arenes with Simple Alkylamines. Org.Lett. 2016, 18 (6), 1318-1321. DOI: 10.1021/acs.orglett.6b00241.(90) Yan, Q., et. al. Nickel-Catalyzed Direct Amination of Arenes with Alkylamines. Org. Lett. 2015, 17(10), 2482-2485. DOI: 10.1021/acs.orglett.5b00990.(91) Peng, J., et. al. Copper-Catalyzed C(sp2)–H Amidation with Azides as Amino Sources. Org. Lett.2014, 16 (18), 4702-4705. DOI: 10.1021/ol502010g.(92) Chen, X., et. al. Cu(II)-Catalyzed Functionalizations of Aryl C−H Bonds Using O2 as an Oxidant.J. Am. Chem. Soc. 2006, 128 (21), 6790-6791. DOI: 10.1021/ja061715q.(93) John, A., et. al. Copper-Catalyzed Amidation of 2-Phenylpyridine with Oxygen as the TerminalOxidant. J. Org. Chem. 2011, 76 (10), 4158-4162. DOI: 10.1021/jo200409h.(94) Xu, H., et. al. Cu-Catalyzed Direct Amidation of Aromatic C–H Bonds: An Access to Arylamines.J. Org. Chem. 2014, 79 (10), 4414-4422. DOI: 10.1021/jo5003592.(95) Li, G., et. al. Copper(I)-Catalyzed Dehydrogenative Amidation of Arenes Using Air as the Oxidant.Adv. Synth. Catal. 2015, 357 (6), 1311-1315. DOI: https://doi.org/10.1002/adsc.201400883.(96) Tran, L. D., et. al. . Directed Amination of Non-Acidic Arene C-H Bonds by a Copper–SilverCatalytic System. Angew. Chem. Int. Ed. 2013, 52 (23), 6043-6046. DOI:https://doi.org/10.1002/anie.201300135.(97) Pumphrey, A. L., et. al. RhII2-Catalyzed Synthesis of α-, β-, or δ-Carbolines from Aryl Azides. Angew.Chem. Int. Ed. 2012, 51 (24), 5920-5923. DOI: https://doi.org/10.1002/anie.201201788.(98) Stokes, B. J., et. al. Rh2(II)-Catalyzed Nitro-Group Migration Reactions: Selective Synthesis of 3-Nitroindoles from β-Nitro Styryl Azides. J. Am. Chem. Soc. 2011, 133 (13), 4702-4705. DOI:10.1021/ja111060q.(99) Stokes, B. J., et. al. Rh2(II)-Catalyzed Synthesis of Carbazoles from Biaryl Azides. J. Org. Chem.2009, 74 (8), 3225-3228. DOI: 10.1021/jo9002536.(100) Chiba, S., et. al. Rh(II)-Catalyzed Isomerization of 2-Aryl-2H-azirines to 2,3-Disubstituted Indoles.ChemInform 2007, 38 (26). DOI: https://doi.org/10.1002/chin.200726104.(101) Shen, M., et. al. Dirhodium(II)-Catalyzed Intramolecular C-H Amination of Aryl Azides. Angew.Chem. Int. Ed. 2008, 47 (27), 5056-5059. DOI: https://doi.org/10.1002/anie.200800689.(102) He, L., et. al. Ruthenium(II) Porphyrin-Catalyzed Amidation of Aromatic Heterocycles. Org. Lett.2004, 6 (14), 2405-2408. DOI: 10.1021/ol049232j.(103) Shou, W. G., et. al. Ruthenium-Catalyzed Intramolecular Amination Reactions of Aryl- andVinylazides. Organometallics 2009, 28 (24), 6847-6854. DOI: 10.1021/om900275j.(104) Wei, J., et. al. Ruthenium porphyrin catalyzed diimination of indoles with aryl azides as the nitrene source. Chem. Comm. 2014, 50 (25), 3373-3376, 10.1039/C3CC49052A. DOI: 10.1039/C3CC49052A.(105) Liang, S., et. al. Half-Sandwich Scorpionates as Nitrene Transfer Catalysts. Organometallics 2012,31 (23), 8055-8058. DOI: 10.1021/om3009102.(106) Liu, Y., et. al. [Fe(F20TPP)Cl]-Catalyzed Amination with Arylamines and{[Fe(F20TPP)(NAr)](PhI=NAr)} Intermediate Assessed by High-Resolution ESI-MS and DFTCalculations. Chem. Asian J. 2015, 10 (1), 100-105. DOI: https://doi.org/10.1002/asia.201402580.(107) Bonnamour, J., et. al. Iron(II) Triflate as a Catalyst for the Synthesis of Indoles by IntramolecularC−H Amination. Org. Lett. 2011, 13 (8), 2012-2014. DOI: 10.1021/ol2004066.(108) John, A., et. al. Copper-catalyzed C(sp2)-H amidation of unactivated arenes by Ntosyloxycarbamates.Chem. Comm. 2013, 49 (93), 10965-10967. DOI: 10.1039/c3cc46412a.(109) Breslow, R., et. al. Intramolecular nitrene carbon-hydrogen insertions mediated by transition-metalcomplexes as nitrogen analogs of cytochrome P-450 reactions. J. Am. Chem. Soc. 1983, 105 (22), 6728-6729. DOI: 10.1021/ja00360a039.(110) Fiori, K. W., et. al. A mechanistic analysis of the Rh-catalyzed intramolecular C–H aminationreaction. Tetrahedron 2009, 65 (16), 3042-3051. DOI: https://doi.org/10.1016/j.tet.2008.11.073.(111) Du Bois, J. Rhodium-Catalyzed C–H Amination. An Enabling Method for Chemical Synthesis.Org. Process Res. Dev. 2011, 15 (4), 758-762. DOI: 10.1021/op200046v.(112) Wehn, P. M., et. al. Stereochemical Models for Rh-Catalyzed Amination Reactions of ChiralSulfamates. Org. Lett. 2003, 5 (25), 4823-4826. DOI: 10.1021/ol035776u.(113) Espino, C. G., et. al. Expanding the Scope of C−H Amination through Catalyst Design. J. Am.Chem. Soc. 2004, 126 (47), 15378-15379. DOI: 10.1021/ja0446294.(114) Grigg, R. D., et. al. Synthesis of Propargylic and Allenic Carbamates via the C–H Amination ofAlkynes. Org. Lett. 2012, 14 (1), 280-283. DOI: 10.1021/ol203055v.(115) Nguyen, Q., et. al. Rh2(II)-Catalyzed Intramolecular Aliphatic C–H Bond Amination ReactionsUsing Aryl Azides as the N-Atom Source. J. Am. Chem. Soc. 2012, 134 (17), 7262-7265. DOI:10.1021/ja301519q.(116) Kurokawa, T., et. al. Synthesis of 1,3-Diamines Through Rhodium-Catalyzed C-H Insertion. Angew.Chem. Int. Ed. 2009, 48 (15), 2777-2779. DOI: https://doi.org/10.1002/anie.200806192.(117) Fiori, K. W., et. al. Catalytic Intermolecular Amination of C−H Bonds: Method Development andMechanistic Insights. J. Am. Chem. Soc. 2007, 129 (3), 562-568. DOI: 10.1021/ja0650450.(118) Roizen, J. L., et. al. Selective Intermolecular Amination of C-H Bonds at Tertiary Carbon Centers.Angew. Chem. Int. Ed. 2013, 52 (43), 11343-11346. DOI: https://doi.org/10.1002/anie.201304238.(119) Bess, E. N., et. al. Analyzing Site Selectivity in Rh2(esp)2-Catalyzed Intermolecular C–HAmination Reactions. J. Am. Chem. Soc. 2014, 136 (15), 5783-5789. DOI: 10.1021/ja5015508.(120) Liang, C., et. al. Efficient Diastereoselective Intermolecular Rhodium-Catalyzed C-H Amination.Angew. Chem. Int. Ed. 2006, 45 (28), 4641-4644. DOI: https://doi.org/10.1002/anie.200601248.(121) Liang, C., et. al. Toward a Synthetically Useful Stereoselective C−H Amination of Hydrocarbons.J. Am. Chem. Soc. 2008, 130 (1), 343-350. DOI: 10.1021/ja076519d.(122) Collet, F. Studies in catalytic C–H amination involving nitrene C–H insertion. Dalton Trans. 2010,39 (43), 10401-10413, 10.1039/C0DT00283F. DOI: 10.1039/C0DT00283F.(123) Buendia, J., et. al. Tandem Catalytic C(sp3)-H Amination/Sila-Sonogashira–Hagihara CouplingReactions with Iodine Reagents. Angew. Chem. Int. Ed. 2015, 54 (19), 5697-5701. DOI:https://doi.org/10.1002/anie.201412364.(124) Reddy, R. P., et. al. Dirhodium Tetracarboxylates Derived from Adamantylglycine as Chiral Catalysts for Enantioselective C−H Aminations. Org. Lett. 2006, 8 (22), 5013-5016. DOI:10.1021/ol061742l.(125) Zalatan, D. N., et. al. A Chiral Rhodium Carboxamidate Catalyst for Enantioselective C−HAmination. J. Am. Chem. Soc. 2008, 130 (29), 9220-9221. DOI: 10.1021/ja8031955.(126) Noda, H., et. al. O-Benzoylhydroxylamines as Alkyl Nitrene Precursors: Synthesis of Saturated NHeterocyclesfrom Primary Amines. Org. Lett. 2020, 22 (22), 8769-8773. DOI:10.1021/acs.orglett.0c02842.(127) Yu, X.-Q., et. al. Amidation of Saturated C−H Bonds Catalyzed by Electron-Deficient Rutheniumand Manganese Porphyrins. A Highly Catalytic Nitrogen Atom Transfer Process. Org. Lett. 2000, 2 (15),2233-2236. DOI: 10.1021/ol000107r.(128) Harvey, M. E., et. al. A Diruthenium Catalyst for Selective, Intramolecular Allylic C–H Amination:Reaction Development and Mechanistic Insight Gained through Experiment and Theory. J. Am. Chem.Soc. 2011, 133 (43), 17207-17216. DOI: 10.1021/ja203576p.(129) Milczek, E., et. al. Enantioselective C-H Amination Using Cationic Ruthenium(II)–pyboxCatalysts. Angew. Chem. Int. Ed. 2008, 47 (36), 6825-6828. DOI:https://doi.org/10.1002/anie.200801445.(130) Nishioka, Y., et. al. Enantio- and Regioselective Intermolecular Benzylic and Allylic C-H BondAmination. Angew. Chem. Int. Ed. 2013, 52 (6), 1739-1742. DOI:https://doi.org/10.1002/anie.201208906.(131) Liu, Y.; Che, C.-M. [FeIII(F20-tpp)Cl] Is an Effective Catalyst for Nitrene Transfer Reactions andAmination of Saturated Hydrocarbons with Sulfonyl and Aryl Azides as Nitrogen Source under Thermaland Microwave-Assisted Conditions. Chemistry – A European Journal 2010, 16 (34), 10494-10501. DOI:https://doi.org/10.1002/chem.201000581.(132) Paradine, S. M., et. al. Iron-Catalyzed Intramolecular Allylic C–H Amination. J. Am. Chem. Soc.2012, 134 (4), 2036-2039. DOI: 10.1021/ja211600g.(133) King, E. R., et. al. Catalytic C−H Bond Amination from High-Spin Iron Imido Complexes. J. Am.Chem. Soc. 2011, 133 (13), 4917-4923. DOI: 10.1021/ja110066j.(134) Prier, C. K., et. al. Enantioselective, intermolecular benzylic C–H amination catalysed by anengineered iron-haem enzyme. Nat. Chem. 2017, 9 (7), 629-634. DOI: 10.1038/nchem.2783.(135) Athavale, S. V., et. al. Enzymatic Nitrogen Insertion into Unactivated C–H Bonds. J. Am. Chem.Soc. 2022, 144 (41), 19097-19105. DOI: 10.1021/jacs.2c08285.(136) Wu, L., et. al. Ligand-Free Iron-Catalyzed Intramolecular Amination of C-H Bond for the Synthesisof Imidazolinones. Chinese Journal of Organic Chemistry 2021, 41 (10), 4083-4087. DOI:10.6023/cjoc202104054.(137) Kweon, J., et. al. Highly Robust Iron Catalyst System for Intramolecular C(sp3)−H AmidationLeading to γ-Lactams. Angew. Chem. Int. Ed. 2021, 60 (6), 2909-2914. DOI:https://doi.org/10.1002/anie.202013499.(138) Paradine, S. M., et. al. A manganese catalyst for highly reactive yet chemoselective intramolecularC(sp3)–H amination. Nature Chem. 2015, 7 (12), 987-994. DOI: 10.1038/nchem.2366.(139) Clark, J. R., et. al. Manganese-catalysed benzylic C(sp3)–H amination for late-stagefunctionalization. Nat. Chem. 2018, 10 (6), 583-591. DOI: 10.1038/s41557-018-0020-0.(140) Ni, Z., et. al. Highly Regioselective Copper-Catalyzed Benzylic C-H Amination by NFluorobenzenesulfonimide.Angew. Chem. Int. Ed. 2012, 51 (5), 1244-1247. DOI:https://doi.org/10.1002/anie.201107427.(141) Kohmura, Y., et. al. Benzylic and Allylic Amination. Synlett 1997, 12 (12), 1456-1458. DOI:10.1055/s-1997-1067.(142) Gephart III, R. T., et. al. Catalytic C-H Amination with Aromatic Amines. Angew. Chem. Int. Ed.2012, 51 (26), 6488-6492. DOI: https://doi.org/10.1002/anie.201201921.(143) Michaudel, Q., et. al. Intermolecular Ritter-Type C–H Amination of Unactivated sp3 Carbons. J.Am. Chem. Soc. 2012, 134 (5), 2547-2550. DOI: 10.1021/ja212020b.(144) Tran, B. L., et. al. Copper-Catalyzed Intermolecular Amidation and Imidation of UnactivatedAlkanes. J. Am. Chem. Soc. 2014, 136 (6), 2555-2563. DOI: 10.1021/ja411912p.(145) Kim, D. S., et. al. Formation of the Tertiary Sulfonamide C(sp3)–N Bond Using Alkyl BoronicEster via Intramolecular and Intermolecular Copper-Catalyzed Oxidative Cross-Coupling. J. Org. Chem.2021, 86 (23), 17380-17394. DOI: 10.1021/acs.joc.1c01759.(146) Lee, J., et. al. Versatile Cp*Co(III)(LX) Catalyst System for Selective Intramolecular C–HAmidation Reactions. J. Am. Chem. Soc. 2020, 142 (28), 12324-12332. DOI: 10.1021/jacs.0c04448.(147) Zhang, Y., et. al. Au(III)-catalyzed intermolecular amidation of benzylic C–H bonds. Org. Biomol.Chem. 2012, 10 (46), 9137-9141, 10.1039/C2OB26857D. DOI: 10.1039/C2OB26857D.(148) Sun, K., et. al. Intramolecular Ir(I)-Catalyzed Benzylic C−H Bond Amination of ortho-SubstitutedAryl Azides. Org. Lett. 2009, 11 (16), 3598-3601. DOI: 10.1021/ol901317j.(149) Ichinose, M., et. al. Enantioselective Intramolecular Benzylic C-H Bond Amination: EfficientSynthesis of Optically Active Benzosultams. Angew. Chem. Int. Ed. 2011, 50 (42), 9884-9887. DOI:https://doi.org/10.1002/anie.201101801.(150) Hong, S. Y., et. al. Selective formation of γ-lactams via C-H amidation enabled by tailored iridiumcatalysts. Science 2018, 359 (6379), 1016-1021. DOI: doi:10.1126/science.aap7503.(151) Dydio, P., et. al. Chemoselective, Enzymatic C–H Bond Amination Catalyzed by a CytochromeP450 Containing an Ir(Me)-PIX Cofactor. J. Am. Chem. Soc. 2017, 139 (5), 1750-1753. DOI:10.1021/jacs.6b11410.(152) Cui, Y., et. al. A Silver-Catalyzed Intramolecular Amidation of Saturated C-H Bonds. Angew. Chem.Int. Ed. 2004, 43 (32), 4210-4212. DOI: https://doi.org/10.1002/anie.200454243.(153) Li, Z., et. al. Silver-Catalyzed Intermolecular Amination of C-H Groups. Angew. Chem. Int. Ed.2007, 46 (27), 5184-5186. DOI: https://doi.org/10.1002/anie.200700760.(154) Alderson, J. M., et. al. Ligand-Controlled, Tunable Silver-Catalyzed C–H Amination. J. Am. Chem.Soc. 2014, 136 (48), 16720-16723. DOI: 10.1021/ja5094309.(155) Hazelard, D., et. al. Catalytic C–H amination at its limits: challenges and solutions. Org. Chem.Front. 2017, 4 (12), 2500-2521, 10.1039/C7QO00547D. DOI: 10.1039/C7QO00547D.(156) Roizen, J. L., et. al. Metal-Catalyzed Nitrogen-Atom Transfer Methods for the Oxidation ofAliphatic C–H Bonds. Acc. Chem. Res. 2012, 45 (6), 911-922. DOI: 10.1021/ar200318q.(157) Darses, B., et. al. Transition metal-catalyzed iodine(III)-mediated nitrene transfer reactions:efficient tools for challenging syntheses. Chem. Comm. 2017, 53 (3), 493-508, 10.1039/C6CC07925C.DOI: 10.1039/C6CC07925C.(158) Chiappini, N. D., et. al. Intermolecular C(sp3)−H Amination of Complex Molecules. Angew. Chem.Int. Ed. 2018, 57 (18), 4956-4959. DOI: https://doi.org/10.1002/anie.201713225.(159) Wang, Y.-C., et. al. Unravelling nitrene chemistry from acyclic precursors: recent advances andchallenges. Org. Chem. Front. 2021, 8 (7), 1677-1693, 10.1039/D0QO01360A. DOI:10.1039/D0QO01360A.(160) Brunard, E., et. al. Catalytic Intermolecular C(sp3)–H Amination: Selective Functionalization of Tertiary C–H Bonds vs Activated Benzylic C–H Bonds. J. Am. Chem. Soc. 2021, 143 (17), 6407-6412.DOI: 10.1021/jacs.1c03872.(161) Brady, P. B., et. al. Recent Applications of Rh- and Pd-Catalyzed C(sp3)–H Functionalization inNatural Product Total Synthesis. Eur. J. Org. Chem. 2017, 2017 (35), 5179-5190. DOI:https://doi.org/10.1002/ejoc.201700641.(162) Abrams, D. J., et. al. Recent applications of C-H functionalization in complex natural productsynthesis. Chem. Soc. Rev. 2018, 47 (23), 8925-8967, 10.1039/C8CS00716K. DOI:10.1039/C8CS00716K.(163) Tsukano, C., et. al. Total Synthesis of Nitrogen-Containing Natural Products Based on Palladium-Catalyzed C-H Functionalization. In Handbook of CH-Functionalization, pp 1-49.(164) Fleming, J. J., et. al. (+)-Saxitoxin: A First and Second Generation Stereoselective Synthesis. J.Am. Chem. Soc. 2007, 129 (32), 9964-9975. DOI: 10.1021/ja071501o.(165) Hinman, A., et. al. A Stereoselective Synthesis of (−)-Tetrodotoxin. J. Am. Chem. Soc. 2003, 125(38), 11510-11511. DOI: 10.1021/ja0368305.(166) Lescot, C., et. al. Intermolecular C–H Amination of Complex Molecules: Insights into the FactorsGoverning the Selectivity. J. Org. Chem. 2012, 77 (17), 7232-7240. DOI: 10.1021/jo301563j.(167) O'Neil, L. G., et. al. Electrophilic Aminating Agents in Total Synthesis. Angew. Chem. Int. Ed.2021, 60 (49), 25640-25666. DOI: https://doi.org/10.1002/anie.202102864.(168) Louillat, M.-L.; P., e. a. Oxidative C–H amination reactions. Chem. Soc. Rev. 2014, 43 (3), 901-910, 10.1039/C3CS60318K. DOI: 10.1039/C3CS60318K.(169) He, J., et. al. Palladium-Catalyzed Transformations of Alkyl C–H Bonds. Chem. Rev. 2017, 117(13), 8754-8786. DOI: 10.1021/acs.chemrev.6b00622.(170) He, G., et. al. Highly Efficient Syntheses of Azetidines, Pyrrolidines, and Indolines via PalladiumCatalyzed Intramolecular Amination of C(sp3)–H and C(sp2)–H Bonds at γ and δ Positions. J. Am. Chem.Soc. 2012, 134 (1), 3-6. DOI: 10.1021/ja210660g.(171) He, G., et. al. Use of a Readily Removable Auxiliary Group for the Synthesis of Pyrrolidones bythe Palladium-Catalyzed Intramolecular Amination of Unactivated γ C(sp3)-H Bonds. Angew. Chem. Int.Ed. 2013, 52 (42), 11124-11128. DOI: https://doi.org/10.1002/anie.201305615.(172) Neumann, J. J., et. al. Palladium-Catalyzed Amidation of Unactivated C(sp3)-H Bonds: fromAnilines to Indolines. Angew. Chem. Int. Ed. 2009, 48 (37), 6892-6895. DOI:https://doi.org/10.1002/anie.200903035.(173) McNally, A., et. al. Palladium-catalysed C–H activation of aliphatic amines to give strainednitrogen heterocycles. Nature 2014, 510 (7503), 129-133. DOI: 10.1038/nature13389.(174) He, J., et. al. Palladium(0)/PAr3-Catalyzed Intermolecular Amination of C(sp3) H Bonds:Synthesis of β-Amino Acids. Angew. Chem. Int. Ed. 2015, 54 (22), 6545-6549. DOI:https://doi.org/10.1002/anie.201502075.(175) Zhang, Q., et. al. Stereoselective Synthesis of Chiral α-Amino-β-Lactams through Palladium(II)-Catalyzed Sequential Monoarylation/Amidation of C(sp3)-H Bonds. Angew. Chem. Int. Ed. 2013, 52 (51),13588-13592. DOI: https://doi.org/10.1002/anie.201306625.(176) Jin, L., et. al. Palladium-catalyzed intermolecular amination of unactivated C(sp3)–H bonds via acleavable directing group. Chem. Comm. 2017, 53 (28), 3986-3989, 10.1039/C7CC00808B. DOI:10.1039/C7CC00808B.(177) Wang, Z., et. al. Copper-Catalyzed Intramolecular C(sp3)-H and C(sp2)-H Amidation by OxidativeCyclization. Angew. Chem. Int. Ed. 2014, 53 (13), 3496-3499. DOI:https://doi.org/10.1002/anie.201311105.(178) Kang, T., et. al. Synthesis of 1,2-amino alcohols via catalytic C–H amidation of sp3 methyl C–Hbonds. Chem. Comm. 2014, 50 (81), 12073-12075, 10.1039/C4CC05655H. DOI: 10.1039/C4CC05655H.(179) Kang, T., et. al. Iridium-Catalyzed Intermolecular Amidation of sp3 C–H Bonds: Late-StageFunctionalization of an Unactivated Methyl Group. J. Am. Chem. Soc. 2014, 136 (11), 4141-4144. DOI:10.1021/ja501014b.(180) Wang, N., et. al. Rhodium(III)-Catalyzed Intermolecular Amidation with Azides via C(sp3)–HFunctionalization. J. Org. Chem. 2014, 79 (11), 5379-5385. DOI: 10.1021/jo5008515.(181) Tang, C., et. al. Rh-Catalyzed Direct Amination of Unactivated C(sp3)−H bond with AnthranilsUnder Mild Conditions. Chem. Eur. J. 2016, 22 (32), 11165-11169. DOI:https://doi.org/10.1002/chem.201602556.(182) Huang, X., et. al. Rhodium(III)-Catalyzed Activation of C-H Bonds and Subsequent IntermolecularAmidation at Room Temperature. Angew. Chem. Int. Ed. 2015, 54 (32), 9404-9408. DOI:https://doi.org/10.1002/anie.201504507.(183) Yu, S., et. al. Anthranil: An Aminating Reagent Leading to Bifunctionality for Both C(sp3)−H andC(sp2)−H under Rhodium(III) Catalysis. Angew. Chem. Int. Ed. 2016, 55 (30), 8696-8700. DOI:https://doi.org/10.1002/anie.201602224.(184) Wang, H., et. al. Rhodium(III)-Catalyzed Amidation of Unactivated C(sp3)-H Bonds. Angew. Chem.Int. Ed. 2015, 54 (44), 13049-13052. DOI: https://doi.org/10.1002/anie.201506323.(185) Liu, B., et. al. Ru(II)-catalyzed amidation reactions of 8-methylquinolines with azides via C(sp3)–H activation. Chem. Comm. 2015, 51 (91), 16334-16337, 10.1039/C5CC06230F. DOI:10.1039/C5CC06230F.(186) Wu, X., et. al. Cobalt-catalysed site-selective intra- and intermolecular dehydrogenative aminationof unactivated sp3 carbons. Nat. Commun. 2015, 6 (1), 6462. DOI: 10.1038/ncomms7462.(187) Cochet, T., et. al. Rhodium(iii)-catalyzed allylic C–H bond amination. Synthesis of cyclic aminesfrom ω-unsaturated N-sulfonylamines. Chem. Comm. 2012, 48 (87), 10745-10747,10.1039/C2CC36067E. DOI: 10.1039/C2CC36067E.(188) Shibata, Y. e. a. Facile Generation and Isolation of π-Allyl Complexes from Aliphatic Alkenes andan Electron-Deficient Rh(III) Complex: Key Intermediates of Allylic C–H Functionalization.Organometallics 2016, 35 (10), 1547-1552. DOI: 10.1021/acs.organomet.6b00143.(189) Burman, J. S., et. al. Regioselective Intermolecular Allylic C−H Amination of Disubstituted Olefinsvia Rhodium/π-Allyl Intermediates. Angew. Chem. Int. Ed. 2017, 56 (44), 13666-13669. DOI:https://doi.org/10.1002/anie.201707021.(190) Farr, C. M. B., et. al. Designing a Planar Chiral Rhodium Indenyl Catalyst for Regio- andEnantioselective Allylic C–H Amidation. J. Am. Chem. Soc. 2020, 142 (32), 13996-14004. DOI:10.1021/jacs.0c07305.(191) Burman, J. S., et. al. Rh(III) and Ir(III)Cp* Complexes Provide Complementary RegioselectivityProfiles in Intermolecular Allylic C–H Amidation Reactions. ACS Catal. 2019, 9 (6), 5474-5479. DOI:10.1021/acscatal.9b01338.(192) Nelson, T. A. F., et. al. Allylic C–H functionalization via group 9 π-allyl intermediates. DaltonTrans. 2020, 49 (40), 13928-13935, 10.1039/D0DT02313B. DOI: 10.1039/D0DT02313B.(193) Sihag, P., et. al. Rh(III)-Catalyzed allylic C–H amidation of unactivated alkenes with in situgenerated iminoiodinanes. Chem. Comm. 2021, 57 (52), 6428-6431, 10.1039/D1CC02283K. DOI:10.1039/D1CC02283K.(194) Wang, F., et. al. Comprehensive Theoretical Study of Cp*IrIII-Catalyzed IntermolecularEnantioselective Allylic C–H Amidation: Reaction Mechanism, Electronic Processes, andRegioselectivity. 2023, 88 (4), 2493-2504. DOI: 10.1021/acs.joc.2c02951.(195) Kazerouni, A. M., et. al. Regioselective Cp*Ir(III)-Catalyzed Allylic C–H Sulfamidation ofAllylbenzene Derivatives. J, Org. Chem 2019, 84 (20), 13179-13185. DOI: 10.1021/acs.joc.9b01816.(196) Sihag, P., et. al. Iridium(III)-Catalyzed Intermolecular Allylic C–H Amidation of Internal Alkeneswith Sulfonamides. J. Org. Chem. 2019, 84 (20), 13053-13064. DOI: 10.1021/acs.joc.9b02047.(197) Lei, H. e. a. A site-selective amination catalyst discriminates between nearly identical C–H bondsof unsymmetrical disubstituted alkenes. Nat. Chem. 2020, 12 (8), 725-731. DOI: 10.1038/s41557-020-0470-z.(198) Knecht, T., et. al. Intermolecular, Branch-Selective, and Redox-Neutral Cp*IrIII-Catalyzed AllylicC−H Amidation. Angew. Chem. Int. Ed. 2019, 58 (21), 7117-7121. DOI:https://doi.org/10.1002/anie.201901733.(199) Huang, F., et. al. Electrostatic repulsion-controlled regioselectivity in nitrene-mediated allylic C–H amidations. Org. Chem. Front. 2021, 8 (21), 6038-6047, 10.1039/D1QO01018B. DOI:10.1039/D1QO01018B.(200) Lei, H., et. al. Ir-Catalyzed Intermolecular Branch-Selective Allylic C–H Amidation of UnactivatedTerminal Olefins. J. Am. Chem. Soc. 2019, 141 (6), 2268-2273. DOI: 10.1021/jacs.9b00237.(201) Duarte, F. J. S., et. al. Mechanistic Study of the Direct Intramolecular Allylic Amination ReactionCatalyzed by Palladium(II). ACS Catal. 2016, 6 (3), 1772-1784. DOI: 10.1021/acscatal.5b02091.(202) Nahra, F., et. al. Striking AcOH Acceleration in Direct Intramolecular Allylic Amination Reactions.2009, 15 (42), 11078-11082. DOI: https://doi.org/10.1002/chem.200901946.(203) Fraunhoffer, K. J., et. al. syn-1,2-Amino Alcohols via Diastereoselective Allylic C−H Amination.Journal of the American Chemical Society 2007, 129 (23), 7274-7276. DOI: 10.1021/ja071905g.(204) Rice, G. T., et. al. Allylic C−H Amination for the Preparation of syn-1,3-Amino Alcohol Motifs. J.Am. Chem. Soc. 2009, 131 (33), 11707-11711. DOI: 10.1021/ja9054959.(205) Jiang, C.; Covell, D. J.; Stepan, A. F.; Plummer, M. S.; White, M. C. Sequential Allylic C–HAmination/Vinylic C–H Arylation: A Strategy for Unnatural Amino Acid Synthesis from α-Olefins.Organic Letters 2012, 14 (6), 1386-1389. DOI: 10.1021/ol300063t.(206) Wu, L., et. al. Brønsted Base-Modulated Regioselective Pd-Catalyzed Intramolecular AerobicOxidative Amination of Alkenes: Formation of Seven-Membered Amides and Evidence for Allylic C−HActivation. Org. Lett. 2009, 11 (12), 2707-2710. DOI: 10.1021/ol900941t.(207) Sharma, A., et. al. Enantioselective Functionalization of Allylic C–H Bonds Following a Strategyof Functionalization and Diversification. J. Am. Chem. Soc. 2013, 135 (47), 17983-17989. DOI:10.1021/ja409995w.(208) Pak S. C., e. a. Asymmetric intermolecular allylic C-H amination of alkenes with aliphatic amines.Science 2022, 378 (6625), 1207-1213. DOI: doi:10.1126/science.abq1274.(209) Wang, J., et. al. Theoretical studies on Mn-catalyzed intermolecular allylic C-H aminations ofinternal olefins: mechanism, chemo- and regioselectivity. Molecular Catalysis 2022, 524, 112278. DOI:https://doi.org/10.1016/j.mcat.2022.112278.(210) Zhou, S., et. al. Direct intermolecular C(sp3)–H amidation with dioxazolones via synergisticdecatungstate anion photocatalysis and nickel catalysis: A combined experimental and computationalstudy. Journal of Catalysis 2022, 415, 142-152. DOI: https://doi.org/10.1016/j.jcat.2022.10.003.(211) Zheng, Y.-W., et. al. Copper(II)-Photocatalyzed N–H Alkylation with Alkanes. ACS Catal. 2020, 10 (15), 8582-8589. DOI: 10.1021/acscatal.0c01924.(212) Wang, Q., et. al. Photoexcited Direct Amination/Amidation of Inert Csp3–H Bonds via Tungsten–Nickel Catalytic Relay. ACS Catal. 2022, 12 (18), 11071-11077. DOI: 10.1021/acscatal.2c03456.(213) Wakikawa, T., et. al. Native Amide-Directed C(sp3)−H Amidation Enabled by Electron-DeficientRhIII Catalyst and Electron-Deficient 2-Pyridone Ligand. Angew. Chem. Int. Ed. 2022, 61 (52),e202213659. DOI: https://doi.org/10.1002/anie.202213659.(214) Thomas, F., et. al. A new generation of terminal copper nitrenes and their application in aromaticC–H amination reactions. Dalton Trans. 2021, 50 (19), 6444-6462, 10.1039/D1DT00832C. DOI:10.1039/D1DT00832C.(215) Bakhoda, A., et. al. Copper-Catalyzed C(sp3)−H Amidation: Sterically Driven Primary andSecondary C−H Site-Selectivity. Angew. Chem. Int. Ed. 2019, 58 (11), 3421-3425. DOI:https://doi.org/10.1002/anie.201810556.(216) Lee, J., et. al. Cobalt-Catalyzed Intermolecular C–H Amidation of Unactivated Alkanes. J. Am.Chem. Soc. 2021, 143 (13), 5191-5200. DOI: 10.1021/jacs.1c01524.(217) Wang, Q., et. al. Visible-light-mediated tungsten-catalyzed C-H amination of unactivated alkaneswith nitroarenes. Science China Chemistry 2022, 65 (4), 678-685. DOI: 10.1007/s11426-021-1170-2.(218) Chen, B., et. al. Overview of lethal human coronaviruses. Sig. Transduct Target Ther. 2020, 5 (1),89. DOI: 10.1038/s41392-020-0190-2.(219) Ramesh, S., et. al. Emerging SARS-CoV-2 Variants: A Review of Its Mutations, Its Implicationsand Vaccine Efficacy. Vaccines 2021, 9 (10). DOI: 10.3390/vaccines9101195.(220) Du, X., et. al. Omicron adopts a different strategy from Delta and other variants to adapt to host.Sig. Transduct Target Ther. 2022, 7 (1), 45. DOI: 10.1038/s41392-022-00903-5.(221) Zhang, Q., et. al. Molecular mechanism of interaction between SARS-CoV-2 and host cells andinterventional therapy. Sig. Transduct Target Ther. 2021, 6 (1), 233. DOI: 10.1038/s41392-021-00653-w.(222) Arya, R., et. al. Structural insights into SARS-CoV-2 proteins. J. Mol. Biol. 2021, 433 (2), 166725.DOI: 10.1016/j.jmb.2020.11.024.(223) Gao, Y., et. al. Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science2020, 368, 4.(224) Bartlam, M., et. al. Structural proteomics of the SARS coronavirus: a model response to emerginginfectious diseases. J. Struct. Funct. Genomics 2007, 8 (2-3), 85-97. DOI: 10.1007/s10969-007-9024-5.(225) Chu, C. M., et. al. Role of lopinavir/ritonavir in the treatment of SARS: initial virological andclinical findings. Thorax 2004, 59 (3), 252-256. DOI: 10.1136/thorax.2003.012658.(226) Yalcin, N., et. al. COVID-19 and antiepileptic drugs: an approach to guide practices whennirmatrelvir/ritonavir is co-prescribed. Eur. J. Clin. Pharmacol. 2022, 78 (10), 1697-1701. DOI:10.1007/s00228-022-03370-7.(227) Thompson, M. G., et. al. Paxlovid Associated with Decreased Hospitalization Rate Among AdultswithCOVID-19 — United States, April–September 2022. Morb. Mortal Wkly. Rep. 2021, 385 (15), 1355-1371. DOI: 10.1056/NEJMoa2110362 From NLM Medline.(228) Tyndall, J. D. A. S-217622, a 3CL Protease Inhibitor and Clinical Candidate for SARS-CoV-2. J.Med. Chem. 2022, 65 (9), 6496-6498. DOI: 10.1021/acs.jmedchem.2c00624.(229) Xiaoxin, C., et. al. Inhibition mechanism and antiviral activity of an α-ketoamide based SARSCoV-2 main protease inhibitor. bioRxiv 2023, 2023.2003.2009.531862. DOI:10.1101/2023.03.09.531862. (230) Báez-Santos, Y. M., et. al. The SARS-coronavirus papain-like protease: Structure, function andinhibition by designed antiviral compounds. Antiviral Research 2015, 115, 21-38. DOI:https://doi.org/10.1016/j.antiviral.2014.12.015.(231) Walls, A. C., et. al. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein.Cell 2020, 181 (2), 281-292.e286. DOI: https://doi.org/10.1016/j.cell.2020.02.058.(232) Bégin, P., et. al. Convalescent plasma for hospitalized patients with COVID-19: an open-label,randomized controlled trial. Nat. Med. 2021, 27 (11), 2012-2024. DOI: 10.1038/s41591-021-01488-2.(233) Xiang, R., et. al. Neutralizing monoclonal antibodies against highly pathogenic coronaviruses.Current Opinion in Virology 2022, 53, 101199. DOI: https://doi.org/10.1016/j.coviro.2021.12.015.(234) Xia, S., et. al. Peptide-based pan-CoV fusion inhibitors maintain high potency against SARS-CoV-2 Omicron variant. Cell Research 2022, 32 (4), 404-406. DOI: 10.1038/s41422-022-00617-x.(235) Omrani, A. S., et. al. Ribavirin and interferon alfa-2a for severe Middle East respiratory syndromecoronavirus infection: a retrospective cohort study. The Lancet Infectious Dis. 2014, 14 (11), 1090-1095.DOI: https://doi.org/10.1016/S1473-3099(14)70920-X.(236) Rossignol, J.-F. Nitazoxanide: A first-in-class broad-spectrum antiviral agent. Antiviral Research2014, 110, 94-103. DOI: https://doi.org/10.1016/j.antiviral.2014.07.014.(237) Lam, S., et. al. COVID-19: A review of the proposed pharmacological treatments. EuropeanJournal of Pharmacology 2020, 886, 173451. DOI: https://doi.org/10.1016/j.ejphar.2020.173451.(238) Dong, S., et. al. A guideline for homology modeling of the proteins from newly discoveredbetacoronavirus, 2019 novel coronavirus (2019-nCoV). J. Med. Virol. 2020, 92 (9), 1542-1548. DOI:https://doi.org/10.1002/jmv.25768.(239) Gao, Y., et. al. Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science2020, 368 (6492), 779-782. DOI: doi:10.1126/science.abb7498.(240) Wang, Q., et. al. Structural Basis for RNA Replication by the SARS-CoV-2 Polymerase. Cell 2020,182 (2), 417-428.e413. DOI: https://doi.org/10.1016/j.cell.2020.05.034.(241) Gordon, C. J.; Tchesnokov, E. P.; Schinazi, R. F.; Götte, M. Molnupiravir promotes SARS-CoV-2mutagenesis via the RNA template. J. Biol. Chem. 2021, 297 (1), 100770. DOI:https://doi.org/10.1016/j.jbc.2021.100770.(242) Eastman, R. T., et. al. Remdesivir: A Review of Its Discovery and Development Leading toEmergency Use Authorization for Treatment of COVID-19. ACS Cent. Sci. 2020, 6 (5), 672-683. DOI:10.1021/acscentsci.0c00489.(243) Zhang, J., et. al. Azvudine is a thymus-homing anti-SARS-CoV-2 drug effective in treatingCOVID-19 patients. Sig. Transduct Target. Ther. 2021, 6 (1), 414. DOI: 10.1038/s41392-021-00835-6.(244) Zhou, S., et. al. β-ᴅ-N4-hydroxycytidine Inhibits SARS-CoV-2 Through Lethal Mutagenesis But IsAlso Mutagenic To Mammalian Cells. The Journal of Infectious Diseases 2021, 224 (3), 415-419. DOI:10.1093/infdis/jiab247 (acccessed 6/25/2023).(245) Fischer, W. A., et. al. A phase 2a clinical trial of molnupiravir in patients with COVID-19 showsaccelerated SARS-CoV-2 RNA clearance and elimination of infectious virus. Science TranslationalMedicine 2022, 14 (628), eabl7430. DOI: doi:10.1126/scitranslmed.abl7430.(246) Warren, T., et. al. Nucleotide Prodrug GS-5734 Is a Broad-Spectrum Filovirus Inhibitor ThatProvides Complete Therapeutic Protection Against the Development of Ebola Virus Disease (EVD) inInfected Non-human Primates. Open Forum Infectious Diseases 2015, 2 (suppl_1). DOI:10.1093/ofid/ofv130.02 (acccessed 5/29/2023).(247) Tchesnokov, E. P.; Feng, J. Y.; Porter, D. P.; Götte, M. Mechanism of Inhibition of Ebola Virus RNA-Dependent RNA Polymerase by Remdesivir. Viruses 2019, 11 (4). DOI: 10.3390/v11040326 FromNLM.(248) Keating, G. M., et. al. Sofosbuvir: First Global Approval. Drugs 2014, 74 (2), 273-282. DOI:10.1007/s40265-014-0179-7.(249) Jácome, R.; Campillo-Balderas, J. A.; Ponce de León, S.; Becerra, A.; Lazcano, A. Sofosbuvir asa potential alternative to treat the SARS-CoV-2 epidemic. Sci. Rep. 2020, 10 (1), 9294. DOI:10.1038/s41598-020-66440-9.(250) Taylor, R., et. al. Activity of Galidesivir in a Hamster Model of SARS-CoV-2. Viruses 2022, 14 (1),8.(251) Julander, J. G., et. al. An update on the progress of galidesivir (BCX4430), a broad-spectrumantiviral. Antiviral Research 2021, 195, 105180. DOI: https://doi.org/10.1016/j.antiviral.2021.105180.(252) Hassanipour, S., et. al. The efficacy and safety of Favipiravir in treatment of COVID-19: asystematic review and meta-analysis of clinical trials. Scientific Reports 2021, 11 (1), 11022. DOI:10.1038/s41598-021-90551-6.(253) Coomes, E. A., et. al. Favipiravir, an antiviral for COVID-19? Journal of AntimicrobialChemotherapy 2020, 75 (7), 2013-2014. DOI: 10.1093/jac/dkaa171 (acccessed 6/28/2023).(254) Tong, S.; Su, Y.; Yu, Y.; Wu, C.; Chen, J.; Wang, S.; Jiang, J. Ribavirin therapy for severe COVID-19: a retrospective cohort study. International Journal of Antimicrobial Agents 2020, 56 (3), 106114.DOI: https://doi.org/10.1016/j.ijantimicag.2020.106114.(255) Steven, S. G., et. al. AT-527, a Double Prodrug of a Guanosine Nucleotide Analog, Is a PotentInhibitor of SARS-CoV-2 In Vitro and a Promising Oral Antiviral for Treatment of COVID-19.Antimicrob. Agents Chemother. 2021, 65 (4), 10.1128/aac.02479-02420. DOI: doi:10.1128/aac.02479-20.(256) Shannon, A., et. al. A dual mechanism of action of AT-527 against SARS-CoV-2 polymerase. Nat.Comm. 2022, 13 (1), 621. DOI: 10.1038/s41467-022-28113-1.(257) P., V. Atea’s AT-527 fails to meet primary goal of Phase II Covid-19 trial.(258) Ren, Z., et. al. A Randomized, Open-Label, Controlled Clinical Trial of Azvudine Tablets in theTreatment of Mild and Common COVID-19, a Pilot Study. Adv. Sci. 2020, 7 (19), 2001435. DOI:https://doi.org/10.1002/advs.202001435.(259) Xie, Y., et. al. Design and development of an oral remdesivir derivative VV116 against SARSCoV-2. Cell Res. 2021, 31 (11), 1212-1214. DOI: 10.1038/s41422-021-00570-1.(260) Filipowicz, W., et. al. A protein binding the methylated 5'-terminal sequence, m7GpppN, ofeukaryotic messenger RNA. Proc. Natl. Acad. Sci. 1976, 73 (5), 1559-1563. DOI:doi:10.1073/pnas.73.5.1559.(261) Züst, R., et. al. Ribose 2′-O-methylation provides a molecular signature for the distinction of selfand non-self mRNA dependent on the RNA sensor Mda5. Nat. Immunol. 2011, 12 (2), 137-143. DOI:10.1038/ni.1979.(262) Decroly, E., et. al. Conventional and unconventional mechanisms for capping viral mRNA. Nat.Rev. Microbiol. 2012, 10 (1), 51-65. DOI: 10.1038/nrmicro2675.(263) Ogando, N. S., et. al. Structure-function analysis of the nsp14 N7-guanine methyltransferasereveals an essential role in Betacoronavirus replication. PNAS 2021, 118 (49), e2108709118. DOI:doi:10.1073/pnas.2108709118.(264) Devkota, K., et. al. Probing the SAM Binding Site of SARS-CoV-2 Nsp14 In Vitro Using SAMCompetitive Inhibitors Guides Developing Selective Bisubstrate Inhibitors. SLAS Discovery 2021, 26 (9), 1200-1211. DOI: https://doi.org/10.1177/24725552211026261.(265) Zhang, J., et. al. SAM/SAH Analogs as Versatile Tools for SAM-Dependent Methyltransferases.ACS Chem. Biol. 2016, 11 (3), 583-597. DOI: 10.1021/acschembio.5b00812.(266) Anglin, J. L., et. al. Synthesis and Structure–Activity Relationship Investigation of Adenosine-Containing Inhibitors of Histone Methyltransferase DOT1L. J. Am. Chem. Soc. 2012, 55 (18), 8066-8074. DOI: 10.1021/jm300917h.(267) Kim, K. H., et. al. Targeting EZH2 in cancer. Nat. Med. 2016, 22 (2), 128-134. DOI:10.1038/nm.4036.(268) Dowden, J., et. al. Small molecule inhibitors that discriminate between protein arginine NmethyltransferasesPRMT1 and CARM1. Org. Biomol. Chem. 2011, 9 (22), 7814-7821,10.1039/C1OB06100C. DOI: 10.1039/C1OB06100C.(269) McDonald, R. I., et. al. Palladium(II)-Catalyzed Alkene Functionalization via Nucleopalladation:Stereochemical Pathways and Enantioselective Catalytic Applications. Chem. Rev. 2011, 111 (4), 2981-3019. DOI: 10.1021/cr100371y.(270) Lan, X.-W., et. al. Recent Advances in Radical Difunctionalization of Simple Alkenes. Eur. J. Org.Chem. 2017, 2017 (39), 5821-5851. DOI: https://doi.org/10.1002/ejoc.201700678.(271) Coombs, J. R., et. al. Catalytic Enantioselective Functionalization of Unactivated Terminal Alkenes.Angew. Chem. Int. Ed. 2016, 55 (8), 2636-2649. DOI: https://doi.org/10.1002/anie.201507151.(272) Jeon, J., et. al. Regio- and Stereoselective Functionalization Enabled by Bidentate DirectingGroups. Chem. Rec. 2021, 21 (12), 3613-3627. DOI: https://doi.org/10.1002/tcr.202100117.(273) Vasseur, A., et. al. Remote functionalization through alkene isomerization. Nature Chem. 2016, 8(3), 209-219. DOI: 10.1038/nchem.2445.(274) Sommer, H., et. al. Walking Metals for Remote Functionalization. ACS Cent. Sci. 2018, 4 (2), 153-165. DOI: 10.1021/acscentsci.8b00005.(275) Janssen-Müller, D., et. al. Tackling Remote sp3 C−H Functionalization via Ni-Catalyzed “chainwalking”Reactions. Isr. J. Chem. 2020, 60 (3-4), 195-206. DOI: https://doi.org/10.1002/ijch.201900072.(276) Buslov, I., et. al. Chemoselective Alkene Hydrosilylation Catalyzed by Nickel Pincer Complexes.Angew. Chem. Int. Ed. 2015, 54 (48), 14523-14526. DOI: https://doi.org/10.1002/anie.201507829.(277) Buslov, I., et. al. An Easily Accessed Nickel Nanoparticle Catalyst for Alkene Hydrosilylation withTertiary Silanes. Angew. Chem. Int. Ed. 2016, 55 (40), 12295-12299. DOI:https://doi.org/10.1002/anie.201606832.(278) Juliá-Hernández, F., et. al. Remote carboxylation of halogenated aliphatic hydrocarbons withcarbon dioxide. Nature 2017, 545 (7652), 84-88. DOI: 10.1038/nature22316.(279) Sun, S.-Z., et. al. Site-Selective Ni-Catalyzed Reductive Coupling of α-Haloboranes withUnactivated Olefins. J. Am. Chem. Soc. 2018, 140 (40), 12765-12769. DOI: 10.1021/jacs.8b09425.(280) Sun, S.-Z., et. al. Site-Selective Catalytic Deaminative Alkylation of Unactivated Olefins. J. Am.Chem. Soc. 2019, 141 (41), 16197-16201. DOI: 10.1021/jacs.9b07489.(281) He, Y., et. al. Terminal-Selective C(sp3)–H Arylation: NiH-Catalyzed Remote Hydroarylation ofUnactivated Internal Olefins. Organometallics 2021, 40 (14), 2253-2264. DOI:10.1021/acs.organomet.0c00819.(282) Lee, W.-C., et. al. Tandem Isomerization and C–H Activation: Regioselective Hydroheteroarylationof Allylarenes. Org. Lett. 2013, 15 (20), 5358-5361. DOI: 10.1021/ol402644y.(283) He, Y., et. al. Mild and Regioselective Benzylic C–H Functionalization: Ni-Catalyzed ReductiveArylation of Remote and Proximal Olefins. J. Am. Chem. Soc. 2017, 139 (3), 1061-1064. DOI:10.1021/jacs.6b11962.(284) Chen, F., et. al. Remote Migratory Cross-Electrophile Coupling and Olefin HydroarylationReactions Enabled by in Situ Generation of NiH. J. Am. Chem. Soc. 2017, 139 (39), 13929-13935. DOI:10.1021/jacs.7b08064.(285) Xiao, J., et. al. Remote sp3 C–H Amination of Alkenes with Nitroarenes. Chem 2018, 4 (7), 1645-1657. DOI: https://doi.org/10.1016/j.chempr.2018.04.008.(286) Zhang, Y., et. al. Nickel-catalysed selective migratory hydrothiolation of alkenes and alkynes withthiols. Nat. Comm. 2019, 10 (1), 1752. DOI: 10.1038/s41467-019-09783-w.(287) Yulong Z., e. a. Ligand-Enabled NiH-Catalyzed Migratory Hydroamination: Chain Walking as aStrategy for Regiodivergent/Regioconvergent Remote sp3 C-H Amination. CCS Chem. 2021, 3 (9), 2259-2268. DOI: doi:10.31635/ccschem.020.202000490.(288) Liu, J., et. al. Nickel-Catalyzed, Regio- and Enantioselective Benzylic Alkenylation of Olefins withAlkenyl Bromide. Angew. Chem. Int. Ed. 2021, 60 (8), 4060-4064. DOI:https://doi.org/10.1002/anie.202012614.(289) Zhang, Y., et. al. Rapid Access to Highly Functionalized Alkyl Boronates by NiH-CatalyzedRemote Hydroarylation of Boron-Containing Alkenes. Angew. Chem. Int. Ed. 2019, 58 (39), 13860-13864. DOI: https://doi.org/10.1002/anie.201907185.(290) Qian, D., et. al. Ligand-Controlled Regiodivergent Hydroalkylation of Pyrrolines. Angew. Chem.Int. Ed. 2019, 58 (51), 18519-18523. DOI: https://doi.org/10.1002/anie.201912629.(291) Li, W., et. al. Nickel-catalyzed difunctionalization of allyl moieties using organoboronic acids andhalides with divergent regioselectivities. Chem. Sci. 2018, 9 (3), 600-607, 10.1039/C7SC03149A. DOI:10.1039/C7SC03149A.(292) Dhungana, R. K., et. al. Walking metals: catalytic difunctionalization of alkenes at nonclassicalsites. Chem. Sci. 2020, 11 (36), 9757-9774, 10.1039/D0SC03634J. DOI: 10.1039/D0SC03634J.(293) Yu, B., et. al. Azvudine (FNC): a promising clinical candidate for COVID-19 treatment. Sig.Transduct. Target. Ther. 2020, 5 (1), 236. DOI: 10.1038/s41392-020-00351-z.(294) Lipinski, C. A., et. al. Experimental and computational approaches to estimate solubility andpermeability in drug discovery and development settings. Advanced Drug Delivery Reviews 1997, 23 (1),3-25. DOI: https://doi.org/10.1016/S0169-409X(96)00423-1.(295) Bobrovs, R., et. al. Discovery of SARS-CoV-2 Nsp14 and Nsp16 Methyltransferase Inhibitors byHigh-Throughput Virtual Screening. Pharmaceuticals 2021, 14 (12), 1243.(296) Otava, T.; Šála, e. a. The Structure-Based Design of SARS-CoV-2 nsp14 MethyltransferaseLigands Yields Nanomolar Inhibitors. ACS Infect. Dis. 2021, 7 (8), 2214-2220. DOI:10.1021/acsinfecdis.1c00131.(297) Singh, I., et. al. Structure-Based Discovery of Inhibitors of the SARS-CoV-2 Nsp14 N7-Methyltransferase. J. Med. Chem. 2023, 66 (12), 7785-7803. DOI: 10.1021/acs.jmedchem.2c02120.(298) Otava, T., et. al. The Structure-Based Design of SARS-CoV-2 nsp14 Methyltransferase LigandsYields Nanomolar Inhibitors. ACS Infect. Dis. 2021, 7 (8), 2214-2220. DOI:10.1021/acsinfecdis.1c00131.(299) Bobiļeva, O., et. al. Potent SARS-CoV-2 mRNA Cap Methyltransferase Inhibitors by BioisostericReplacement of Methionine in SAM Cosubstrate. ACS Med. Chem. Lett. 2021, 12 (7), 1102-1107. DOI:10.1021/acsmedchemlett.1c00140.(300) Ahmed-Belkacem, R., et. al. Synthesis of adenine dinucleosides SAM analogs as specific inhibitorsof SARS-CoV nsp14 RNA cap guanine-N7-methyltransferase. European Journal of Medicinal Chemistry 2020, 201, 112557. DOI: https://doi.org/10.1016/j.ejmech.2020.112557.(301) Ahmed-Belkacem, R., et. al. Potent Inhibition of SARS-CoV-2 nsp14 N7-Methyltransferase bySulfonamide-Based Bisubstrate Analogues. J. Med. Chem. 2022, 65 (8), 6231-6249. DOI:10.1021/acs.jmedchem.2c00120.(302) Jung, E., et. al. Bisubstrate Inhibitors of Severe Acute Respiratory Syndrome Coronavirus-2 Nsp14Methyltransferase. ACS Med. Chem. Lett. 2022, 13 (9), 1477-1484. DOI:10.1021/acsmedchemlett.2c00265. |
来源库 | 人工提交
|
成果类型 | 学位论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/789847 |
专题 | 理学院_化学系 |
推荐引用方式 GB/T 7714 |
Chen QS. GREEN SYNTHESIS OF MEDICINE AND DEVELOPMENT OF INHIBITORS FOR DRUGGABLE PROTEINS OF SARS-COV- 2[D]. 中国香港特别行政区. 香港理工大学,2024.
|
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | 操作 | |
11968015-陈奇姝-化学系.pdf(28659KB) | -- | -- | 限制开放 | -- | 请求全文 |
个性服务 |
原文链接 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
导出为Excel格式 |
导出为Csv格式 |
Altmetrics Score |
谷歌学术 |
谷歌学术中相似的文章 |
[陈奇姝]的文章 |
百度学术 |
百度学术中相似的文章 |
[陈奇姝]的文章 |
必应学术 |
必应学术中相似的文章 |
[陈奇姝]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论