题名 | Electronic regulation & improved conductivity of molecular catalysts as electrocatalysts |
作者 | |
通讯作者 | Tang, Jun; Wang, Xingzhu; Xu, Baomin |
发表日期 | 2024-07-01
|
DOI | |
发表期刊 | |
ISSN | 2044-4753
|
EISSN | 2044-4761
|
摘要 | ["Molecular catalysts with well-designed structures and abundant metal-nitrogen active sites have received a lot of attention for effective electroreduction of carbon dioxide (ERCD) due to the advantages of having clearly defined active sites for mechanism investigations. However, this metal-nitrogen combination with a fixed electronic structure severely restricts the catalytic efficiency and selectivity, resulting in low production efficiency of more valuable compounds. This work presents the synthesis of metal macrocyclic compounds MPc (M = Fe, Co, Ni, and Zn) through in situ anodic oxidation of N-doped Ti3C2Tx (N-MXene) nanosheets with anchored MPc nanoparticles (named MPc/o-N-MXene). The resulting catalysts exhibit high activity and moreover tailorable selectivity for ERCD on CoPc; CoPc/o-N-MXene shows a faradaic efficiency (FE) for methanol as high as 39.0% with a current density of 32.7 mA cm-2 at -1.0 V (vs. RHE). The oxidation process creates a significant contact between the M-N4 active sites and N-MXene, which regulates the selectivity of ERCD. DFT calculations suggest that only the electronic regulation of Co-N4 by N-doped MXene supports the creation of intermediate *HCO in the generation of methanol in ERCD. Our study presents a new route for the synthesis of efficient catalysts and provides a comprehensive perspective on the mechanism of ERCD on MPc.","Molecular catalysts supported by N-MXene with in situ oxidation have been synthesized by a simple method. Among them, CoPc/o-N-MXene exhibits superior activity and selectivity for ERCD to methanol."] |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 第一
; 通讯
|
资助项目 | Key Fundamental Research Project funding from the Shenzhen Science and Technology Innovation Committee["JCYJ20200109141014474","JCYJ20220818100406014"]
; National Natural Science Foundation of China[U19A2089]
|
WOS研究方向 | Chemistry
|
WOS类目 | Chemistry, Physical
|
WOS记录号 | WOS:001267902100001
|
出版者 | |
来源库 | Web of Science
|
引用统计 | |
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/789852 |
专题 | 工学院_材料科学与工程系 工学院_机械与能源工程系 |
作者单位 | 1.Southern Univ Sci & Technol, Dept Mat Sci & Engn, Shenzhen 518055, Peoples R China 2.Shenzhen Technol Univ, Coll New Mat & New Energies, Shenzhen 518118, Peoples R China 3.Southern Univ Sci & Technol, Dept Mech & Energy Engn, Shenzhen 518055, Peoples R China 4.Shenzhen Putai Technol Co Ltd, Shenzhen 518055, Peoples R China |
第一作者单位 | 材料科学与工程系 |
通讯作者单位 | 材料科学与工程系 |
第一作者的第一单位 | 材料科学与工程系 |
推荐引用方式 GB/T 7714 |
Hu, Bihua,Cao, Hailin,Lei, Zhiwei,et al. Electronic regulation & improved conductivity of molecular catalysts as electrocatalysts[J]. CATALYSIS SCIENCE & TECHNOLOGY,2024.
|
APA |
Hu, Bihua.,Cao, Hailin.,Lei, Zhiwei.,Cui, Shuyu.,Wang, Peizhi.,...&Xu, Baomin.(2024).Electronic regulation & improved conductivity of molecular catalysts as electrocatalysts.CATALYSIS SCIENCE & TECHNOLOGY.
|
MLA |
Hu, Bihua,et al."Electronic regulation & improved conductivity of molecular catalysts as electrocatalysts".CATALYSIS SCIENCE & TECHNOLOGY (2024).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论