中文版 | English
题名

Outpatient reception via collaboration between nurses and a large language model: a randomized controlled trial

作者
通讯作者Chen, Qingyu; Long, Erping
发表日期
2024-07-01
DOI
发表期刊
ISSN
1078-8956
EISSN
1546-170X
摘要
Reception is an essential process for patients seeking medical care and a critical component influencing the healthcare experience. However, current communication systems rely mainly on human efforts, which are both labor and knowledge intensive. A promising alternative is to leverage the capabilities of large language models (LLMs) to assist the communication in medical center reception sites. Here we curated a unique dataset comprising 35,418 cases of real-world conversation audio corpus between outpatients and receptionist nurses from 10 reception sites across two medical centers, to develop a site-specific prompt engineering chatbot (SSPEC). The SSPEC efficiently resolved patient queries, with a higher proportion of queries addressed in fewer rounds of queries and responses (Q & Rs; 68.0% <= 2 rounds) compared with nurse-led sessions (50.5% <= 2 rounds) (P = 0.009) across administrative, triaging and primary care concerns. We then established a nurse-SSPEC collaboration model, overseeing the uncertainties encountered during the real-world deployment. In a single-center randomized controlled trial involving 2,164 participants, the primary endpoint indicated that the nurse-SSPEC collaboration model received higher satisfaction feedback from patients (3.91 +/- 0.90 versus 3.39 +/- 1.15 in the nurse group, P < 0.001). Key secondary outcomes indicated reduced rate of repeated Q&R (3.2% versus 14.4% in the nurse group, P < 0.001) and reduced negative emotions during visits (2.4% versus 7.8% in the nurse group, P < 0.001) and enhanced response quality in terms of integrity (4.37 +/- 0.95 versus 3.42 +/- 1.22 in the nurse group, P < 0.001), empathy (4.14 +/- 0.98 versus 3.27 +/- 1.22 in the nurse group, P < 0.001) and readability (3.86 +/- 0.95 versus 3.71 +/- 1.07 in the nurse group, P = 0.006). Overall, our study supports the feasibility of integrating LLMs into the daily hospital workflow and introduces a paradigm for improving communication that benefits both patients and nurses.
相关链接[来源记录]
收录类别
语种
英语
学校署名
其他
资助项目
National Natural Science Foundation of China (Excellent Youth Scholars Program)["32300483","82090011"] ; Chinese Academy of Medical Sciences Innovation Fund[2023-I2M-3-010]
WOS研究方向
Biochemistry & Molecular Biology ; Cell Biology ; Research & Experimental Medicine
WOS类目
Biochemistry & Molecular Biology ; Cell Biology ; Medicine, Research & Experimental
WOS记录号
WOS:001267740800004
出版者
ESI学科分类
MOLECULAR BIOLOGY & GENETICS
来源库
Web of Science
引用统计
被引频次[WOS]:1
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/789870
专题南方科技大学
南方科技大学盐田医院
作者单位
1.Chinese Acad Med Sci & Peking Union Med Coll, Inst Basic Med Sci, State Key Lab Resp Hlth & Multimorbid, Beijing, Peoples R China
2.NCI, Lab Immune Cell Biol, Ctr Canc Res, NIH, Bethesda, MD USA
3.Southern Univ Sci & Technol, Yantian Hosp, Shenzhen, Peoples R China
4.Wuhan Univ, Renmin Hosp, Wuhan, Peoples R China
5.Yale Univ, Sch Med, Sect Biomed Informat & Data Sci, New Haven, CT 06520 USA
推荐引用方式
GB/T 7714
Wan, Peixing,Huang, Zigeng,Tang, Wenjun,et al. Outpatient reception via collaboration between nurses and a large language model: a randomized controlled trial[J]. NATURE MEDICINE,2024.
APA
Wan, Peixing.,Huang, Zigeng.,Tang, Wenjun.,Nie, Yulan.,Pei, Dajun.,...&Long, Erping.(2024).Outpatient reception via collaboration between nurses and a large language model: a randomized controlled trial.NATURE MEDICINE.
MLA
Wan, Peixing,et al."Outpatient reception via collaboration between nurses and a large language model: a randomized controlled trial".NATURE MEDICINE (2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wan, Peixing]的文章
[Huang, Zigeng]的文章
[Tang, Wenjun]的文章
百度学术
百度学术中相似的文章
[Wan, Peixing]的文章
[Huang, Zigeng]的文章
[Tang, Wenjun]的文章
必应学术
必应学术中相似的文章
[Wan, Peixing]的文章
[Huang, Zigeng]的文章
[Tang, Wenjun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。