中文版 | English
题名

Solving dynamic multimodal optimization problems via a niching-based brain storm optimization with two archives algorithm

作者
通讯作者Cheng, Shi
发表日期
2024-08-01
DOI
发表期刊
ISSN
2210-6502
EISSN
2210-6510
卷号89
摘要
Dynamic and multimodal properties are simultaneously possessed in the dynamic multimodal optimization problems (DMMOPs), which aim to find multiple optimal solutions in a dynamic environment. However, more work still needs to be devoted to solving DMMOPs, which still require significant attention. A nichingbased brain storm optimization with two archives (NBSO2A) algorithm is proposed to solve DMMOPs. The two niching methods, i.e. , neighborhood-based speciation (NS), and nearest-better clustering (NBC), are incorporated into a BSO algorithm to generate new solutions. The two archives preserve the optimal solutions that meet the requirements and practical, inferior solutions discarded during the generation. Improved taboo area (ITA) removes highly similar individuals from the population. An evolution strategy with covariance matrix adaptation (CMA-ES) is adopted to enhance the local search ability and improve the quality of the solutions. The NBSO2A algorithm and four other algorithms were tested on 12 benchmark problems to validate the performance of the NBSO2A algorithm on DMMOPs. The experimental results show that the NBSO2A algorithm outperforms the other compared algorithms on most tested benchmark problems.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
National Natural Science Foundation of China[61806119] ; Natural Science Basic Research Plan In Shaanxi Province of China[2024JC-YBMS-516] ; Fundamental Research Funds for the Central Universities, China[GK202201014] ; Foundation of State Key Laboratory of Public Big Data, China[PBD2022-08]
WOS研究方向
Computer Science
WOS类目
Computer Science, Artificial Intelligence ; Computer Science, Theory & Methods
WOS记录号
WOS:001267054600001
出版者
EI入藏号
20242816670626
EI主题词
Benchmarking ; Clustering algorithms ; Covariance matrix ; Evolutionary algorithms ; Optimal systems ; Storms ; Swarm intelligence
EI分类号
Precipitation:443.3 ; Artificial Intelligence:723.4 ; Information Sources and Analysis:903.1 ; Mathematics:921 ; Optimization Techniques:921.5 ; Systems Science:961
来源库
Web of Science
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/789888
专题工学院_计算机科学与工程系
作者单位
1.Shaanxi Normal Univ, Sch Comp Sci, Xian 710119, Peoples R China
2.Shaanxi Normal Univ, Sch Phys & Informat Technol, Xian 710119, Peoples R China
3.Univ Auckland, Dept Mech & Mechatron Engn, Auckland 1010, New Zealand
4.Beihang Univ, Sch Elect & Informat Engn, Beijing 100191, Peoples R China
5.Engn Univ PAP, Coll Equipment Support & Management, Xian 710086, Peoples R China
6.Southern Univ Sci & Technol SUSTech, Dept Comp Sci & Engn, Shenzhen 518055, Peoples R China
推荐引用方式
GB/T 7714
Jin, Honglin,Wang, Xueping,Cheng, Shi,et al. Solving dynamic multimodal optimization problems via a niching-based brain storm optimization with two archives algorithm[J]. SWARM AND EVOLUTIONARY COMPUTATION,2024,89.
APA
Jin, Honglin.,Wang, Xueping.,Cheng, Shi.,Sun, Yifei.,Zhang, Mingming.,...&Shi, Yuhui.(2024).Solving dynamic multimodal optimization problems via a niching-based brain storm optimization with two archives algorithm.SWARM AND EVOLUTIONARY COMPUTATION,89.
MLA
Jin, Honglin,et al."Solving dynamic multimodal optimization problems via a niching-based brain storm optimization with two archives algorithm".SWARM AND EVOLUTIONARY COMPUTATION 89(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Jin, Honglin]的文章
[Wang, Xueping]的文章
[Cheng, Shi]的文章
百度学术
百度学术中相似的文章
[Jin, Honglin]的文章
[Wang, Xueping]的文章
[Cheng, Shi]的文章
必应学术
必应学术中相似的文章
[Jin, Honglin]的文章
[Wang, Xueping]的文章
[Cheng, Shi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。