中文版 | English
题名

Machine learning-based model to predict severe acute kidney injury after total aortic arch replacement for acute type A aortic dissection

作者
通讯作者Deng, Yiyu; Chen, Chunbo
发表日期
2024-07-15
DOI
发表期刊
EISSN
2405-8440
卷号10期号:13
摘要
Background: Severe acute kidney injury (AKI) after total aortic arch replacement (TAAR) is related to adverse outcomes in patients with acute type A aortic dissection (ATAAD). However, the early prediction of severe AKI remains a challenge. This study aimed to develop a novel model to predict severe AKI after TAAR in ATAAD patients using machine learning algorithms.
Methods: A total of 572 ATAAD patients undergoing TAAR were enrolled in this retrospective study, and randomly divided into a training set (70 %) and a validation set (30 %). Lasso regression, support vector machine-recursive feature elimination and random forest algorithms were used to screen indicators for severe AKI (defined as AKI stage III) in the training set, respectively. Then the intersection indicators were selected to construct models through artificial neural network (ANN) and logistic regression. The AUC-ROC curve was employed to ascertain the prediction efficacy of the ANN and logistic regression models.
Results: The incidence of severe AKI after TAAR was 22.9 % among ATAAD patients. The intersection predictors identified by different machine learning algorithms were baseline serum creatinine and ICU admission variables, including serum cystatin C, procalcitonin, aspartate transaminase, platelet, lactic dehydrogenase, urine N-acetyl-beta-D-glucosidase and Acute Physiology and Chronic Health Evaluation II score. The ANN model showed a higher AUC-ROC than logistic regression (0.938 vs 0.908, p < 0.05). Furthermore, the ANN model could predict 89.1 % of severe AKI cases beforehand. In the validation set, the superior performance of the ANN model was further confirmed in terms of discrimination ability (AUC = 0.916), calibration curve analysis and decision curve analysis. Conclusion: This study developed a novel and reliable clinical prediction model for severe AKI after TAAR in ATAAD patients using machine learning algorithms. Importantly, the ANN model showed a higher predictive ability for severe AKI than logistic regression.
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
通讯
资助项目
National Natural Science Foundation of China[82172162] ; Office of Talent Work Leading Group in Maoming of China[[2020] 24]
WOS研究方向
Science & Technology - Other Topics
WOS类目
Multidisciplinary Sciences
WOS记录号
WOS:001266842100001
出版者
来源库
Web of Science
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/789890
专题南方科技大学第一附属医院
作者单位
1.Southern Med Univ, Guangdong Prov Peoples Hosp, Guangdong Acad Med Sci, Dept Crit Care Med, Guangzhou 510080, Peoples R China
2.Southern Med Univ, Guangdong Prov Peoples Hosp, Guangdong Cardiovasc Inst, Guangdong Acad Med Sci,Dept Intens Care Unit Cardi, Guangzhou 510080, Peoples R China
3.South China Univ Technol, Sch Med, Guangzhou 510000, Peoples R China
4.Southern Univ Sci & Technol, Clin Med Coll 2, Shenzhen Peoples Hosp, Dept Crit Care,Affiliated Hosp 1,Jinan Univ, Shenzhen 518020, Peoples R China
5.Jinan Univ, Southern Univ Sci & Technol, Shenzhen Peoples Hosp, Dept Emergency,Clin Med Coll 2,Affiliated Hosp 1, Shenzhen 518020, Peoples R China
通讯作者单位南方科技大学第一附属医院
推荐引用方式
GB/T 7714
Liu, Xiaolong,Fang, Miaoxian,Wang, Kai,et al. Machine learning-based model to predict severe acute kidney injury after total aortic arch replacement for acute type A aortic dissection[J]. HELIYON,2024,10(13).
APA
Liu, Xiaolong.,Fang, Miaoxian.,Wang, Kai.,Zhu, Junjiang.,Chen, Zeling.,...&Chen, Chunbo.(2024).Machine learning-based model to predict severe acute kidney injury after total aortic arch replacement for acute type A aortic dissection.HELIYON,10(13).
MLA
Liu, Xiaolong,et al."Machine learning-based model to predict severe acute kidney injury after total aortic arch replacement for acute type A aortic dissection".HELIYON 10.13(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Liu, Xiaolong]的文章
[Fang, Miaoxian]的文章
[Wang, Kai]的文章
百度学术
百度学术中相似的文章
[Liu, Xiaolong]的文章
[Fang, Miaoxian]的文章
[Wang, Kai]的文章
必应学术
必应学术中相似的文章
[Liu, Xiaolong]的文章
[Fang, Miaoxian]的文章
[Wang, Kai]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。