中文版 | English
题名

Continental aerosol properties and absorption retrieval using random forest machine learning method specific to geostationary remote sensing

作者
通讯作者Bao, Fangwen; Gao, Jinhui
发表日期
2024-09-01
DOI
发表期刊
ISSN
0034-4257
EISSN
1879-0704
卷号311
摘要
The utilization of satellite remote sensing images for retrieving aerosol optical parameters has been extensively discussed over the past few decades. While employing machine learning models is indeed a viable approach, a significant portion of these studies still rely on redundant data. Moreover, the discussion regarding aerosol absorption, a crucial factor for determining aerosol radiative impact and distinguishing aerosol components, is limited in current machine learning studies. In this study, we propose a random forest model to retrieve high-precision aerosol properties and their absorption over land from Himawari-8 geostationary satellite images. Remarkably, this model attains a high degree of accuracy in estimating aerosol optical depth (AOD), absorption aerosol optical depth (AAOD), and single scattering albedo (SSA) of heavy air mass using only seven primary predictors (observational radiances or their mathematical combinations, geometries, and wavelength). For AOD, the new random forest model demonstrates excellent performance on an hourly scale (R-2 >= 0.89, MAE < 0.07, RMSE <0.13), >80% of the samples fall within the expected error (EE) range. Concerning AAOD, the validation indicates that at least 65% of AAODs have a bias of <= 50%, with an R-2 exceeding 0.78, MAE <= 0.008 and RMSE <= 0.016. SSA also demonstrates a high accuracy (R-2 >= 0.57, MAE < 0.03, RMSE <0.05), with >70% of the results have an error <= 0.03. Through more comprehensive independent spatiotemporal cross validation, it can be determined that the model also offers reliable spatial and temporal predictions. The proposed RF model is capable of learning aerosol properties under most atmosphere scenarios, providing a reasonable conversion from predictors to AOD and AAOD/SSA under high aerosol loadings. The spatial patterns of these parameters suggest that the retrievals show considerable potential in capturing high aerosol loading in East Asia and biomass burning in Southeast Asia. The method introduced in this study offers a new approach to obtaining aerosol properties from geostationary satellite remote sensing, featuring a flexible process, simple inputs, high accuracy, and enhanced robustness. Additionally, it furnishes supplementary insights into aerosol absorption, presenting new possibilities in determining aerosol radiative impact and distinguishing aerosol components.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
资助项目
Foundation of China["42105124","41905114"] ; Scientific Research Foundation of Chengdu University of Information Technology[KYTZ202121]
WOS研究方向
Environmental Sciences & Ecology ; Remote Sensing ; Imaging Science & Photographic Technology
WOS类目
Environmental Sciences ; Remote Sensing ; Imaging Science & Photographic Technology
WOS记录号
WOS:001266752300001
出版者
EI入藏号
20242616508777
EI主题词
Machine learning ; Optical properties ; Optical remote sensing ; Water absorption
EI分类号
Artificial Intelligence:723.4 ; Light/Optics:741.1 ; Optical Devices and Systems:741.3 ; Chemical Operations:802.3 ; Agricultural Equipment and Methods; Vegetation and Pest Control:821
ESI学科分类
GEOSCIENCES
来源库
Web of Science
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/789900
专题工学院_海洋科学与工程系
作者单位
1.Southern Univ Sci & Technol, Dept Ocean Sci & Engn, Shenzhen, Peoples R China
2.Univ Hong Kong, Fac Architecture, Div Landscape Architecture, Future Urban & Sustainable Environm FUSE Lab, Hong Kong, Peoples R China
3.Chengdu Univ Informat Technol, Sch Atmospher Sci, Plateau Atmosphere & Environm Key Lab Sichuan Prov, Chengdu, Peoples R China
4.Shenzhen Polytech Univ, Sch Automot & Transportat Engn, Shenzhen, Peoples R China
5.Honor Device Co Ltd, Shenzhen, Peoples R China
第一作者单位海洋科学与工程系
通讯作者单位海洋科学与工程系
第一作者的第一单位海洋科学与工程系
推荐引用方式
GB/T 7714
Bao, Fangwen,Wu, Shengbiao,Gao, Jinhui,et al. Continental aerosol properties and absorption retrieval using random forest machine learning method specific to geostationary remote sensing[J]. REMOTE SENSING OF ENVIRONMENT,2024,311.
APA
Bao, Fangwen,Wu, Shengbiao,Gao, Jinhui,Yuan, Shuyun,Liu, Yiwen,&Huang, Kai.(2024).Continental aerosol properties and absorption retrieval using random forest machine learning method specific to geostationary remote sensing.REMOTE SENSING OF ENVIRONMENT,311.
MLA
Bao, Fangwen,et al."Continental aerosol properties and absorption retrieval using random forest machine learning method specific to geostationary remote sensing".REMOTE SENSING OF ENVIRONMENT 311(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Bao, Fangwen]的文章
[Wu, Shengbiao]的文章
[Gao, Jinhui]的文章
百度学术
百度学术中相似的文章
[Bao, Fangwen]的文章
[Wu, Shengbiao]的文章
[Gao, Jinhui]的文章
必应学术
必应学术中相似的文章
[Bao, Fangwen]的文章
[Wu, Shengbiao]的文章
[Gao, Jinhui]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。