中文版 | English
题名

Development of a machine learning interatomic potential for exploring pressure-dependent kinetics of phase transitions in germanium

作者
通讯作者Montalenti, F.
发表日期
2024-07-07
DOI
发表期刊
ISSN
0021-9606
EISSN
1089-7690
卷号161期号:1
摘要
We introduce a data-driven potential aimed at the investigation of pressure-dependent phase transitions in bulk germanium, including the estimate of kinetic barriers. This is achieved by suitably building a database including several configurations along minimum energy paths, as computed using the solid-state nudged elastic band method. After training the model based on density functional theory (DFT)-computed energies, forces, and stresses, we provide validation and rigorously test the potential on unexplored paths. The resulting agreement with the DFT calculations is remarkable in a wide range of pressures. The potential is exploited in large-scale isothermal-isobaric simulations, displaying local nucleation in the R8 to beta-Sn pressure-induced phase transformation, taken here as an illustrative example.
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
其他
资助项目
National Science Foundation[CHE-2102317] ; European Union-NextGenerationEU-Project Title "SiGe Hexagonal Diamond Phase by nanoIndenTation (HD- PIT)"[CUP H53D23000780001]
WOS研究方向
Chemistry ; Physics
WOS类目
Chemistry, Physical ; Physics, Atomic, Molecular & Chemical
WOS记录号
WOS:001262307000006
出版者
EI入藏号
20242816671298
EI主题词
Density functional theory ; Design for testability ; Machine learning
EI分类号
Nonferrous Metals and Alloys excluding Alkali and Alkaline Earth Metals:549.3 ; Artificial Intelligence:723.4 ; Probability Theory:922.1 ; Atomic and Molecular Physics:931.3 ; Quantum Theory; Quantum Mechanics:931.4
ESI学科分类
CHEMISTRY
来源库
Web of Science
引用统计
被引频次[WOS]:2
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/789913
专题工学院_材料科学与工程系
作者单位
1.Univ Milano Bicocca, Dept Mat Sci, I-20125 Milan, Italy
2.Dalhousie Univ, Dept Phys & Atmospher Sci, 1453 Lord Dalhousie Dr, Halifax, NS B3H 4R2, Canada
3.Southern Univ Sci & Technol, Dept Mat Sci & Engn, 1088 Xueyuan Ave, Shenzhen 518055, Peoples R China
4.Univ Texas Austin, Dept Chem, 105 East 24th St STOP A5300, Austin, TX 78712 USA
推荐引用方式
GB/T 7714
Fantasia, A.,Rovaris, F.,Abou El Kheir, O.,et al. Development of a machine learning interatomic potential for exploring pressure-dependent kinetics of phase transitions in germanium[J]. JOURNAL OF CHEMICAL PHYSICS,2024,161(1).
APA
Fantasia, A..,Rovaris, F..,Abou El Kheir, O..,Marzegalli, A..,Lanzoni, D..,...&Montalenti, F..(2024).Development of a machine learning interatomic potential for exploring pressure-dependent kinetics of phase transitions in germanium.JOURNAL OF CHEMICAL PHYSICS,161(1).
MLA
Fantasia, A.,et al."Development of a machine learning interatomic potential for exploring pressure-dependent kinetics of phase transitions in germanium".JOURNAL OF CHEMICAL PHYSICS 161.1(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Fantasia, A.]的文章
[Rovaris, F.]的文章
[Abou El Kheir, O.]的文章
百度学术
百度学术中相似的文章
[Fantasia, A.]的文章
[Rovaris, F.]的文章
[Abou El Kheir, O.]的文章
必应学术
必应学术中相似的文章
[Fantasia, A.]的文章
[Rovaris, F.]的文章
[Abou El Kheir, O.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。