题名 | Development of a machine learning interatomic potential for exploring pressure-dependent kinetics of phase transitions in germanium |
作者 | |
通讯作者 | Montalenti, F. |
发表日期 | 2024-07-07
|
DOI | |
发表期刊 | |
ISSN | 0021-9606
|
EISSN | 1089-7690
|
卷号 | 161期号:1 |
摘要 | We introduce a data-driven potential aimed at the investigation of pressure-dependent phase transitions in bulk germanium, including the estimate of kinetic barriers. This is achieved by suitably building a database including several configurations along minimum energy paths, as computed using the solid-state nudged elastic band method. After training the model based on density functional theory (DFT)-computed energies, forces, and stresses, we provide validation and rigorously test the potential on unexplored paths. The resulting agreement with the DFT calculations is remarkable in a wide range of pressures. The potential is exploited in large-scale isothermal-isobaric simulations, displaying local nucleation in the R8 to beta-Sn pressure-induced phase transformation, taken here as an illustrative example. |
相关链接 | [来源记录] |
收录类别 | |
语种 | 英语
|
学校署名 | 其他
|
资助项目 | National Science Foundation[CHE-2102317]
; European Union-NextGenerationEU-Project Title "SiGe Hexagonal Diamond Phase by nanoIndenTation (HD- PIT)"[CUP H53D23000780001]
|
WOS研究方向 | Chemistry
; Physics
|
WOS类目 | Chemistry, Physical
; Physics, Atomic, Molecular & Chemical
|
WOS记录号 | WOS:001262307000006
|
出版者 | |
EI入藏号 | 20242816671298
|
EI主题词 | Density functional theory
; Design for testability
; Machine learning
|
EI分类号 | Nonferrous Metals and Alloys excluding Alkali and Alkaline Earth Metals:549.3
; Artificial Intelligence:723.4
; Probability Theory:922.1
; Atomic and Molecular Physics:931.3
; Quantum Theory; Quantum Mechanics:931.4
|
ESI学科分类 | CHEMISTRY
|
来源库 | Web of Science
|
引用统计 |
被引频次[WOS]:2
|
成果类型 | 期刊论文 |
条目标识符 | http://sustech.caswiz.com/handle/2SGJ60CL/789913 |
专题 | 工学院_材料科学与工程系 |
作者单位 | 1.Univ Milano Bicocca, Dept Mat Sci, I-20125 Milan, Italy 2.Dalhousie Univ, Dept Phys & Atmospher Sci, 1453 Lord Dalhousie Dr, Halifax, NS B3H 4R2, Canada 3.Southern Univ Sci & Technol, Dept Mat Sci & Engn, 1088 Xueyuan Ave, Shenzhen 518055, Peoples R China 4.Univ Texas Austin, Dept Chem, 105 East 24th St STOP A5300, Austin, TX 78712 USA |
推荐引用方式 GB/T 7714 |
Fantasia, A.,Rovaris, F.,Abou El Kheir, O.,et al. Development of a machine learning interatomic potential for exploring pressure-dependent kinetics of phase transitions in germanium[J]. JOURNAL OF CHEMICAL PHYSICS,2024,161(1).
|
APA |
Fantasia, A..,Rovaris, F..,Abou El Kheir, O..,Marzegalli, A..,Lanzoni, D..,...&Montalenti, F..(2024).Development of a machine learning interatomic potential for exploring pressure-dependent kinetics of phase transitions in germanium.JOURNAL OF CHEMICAL PHYSICS,161(1).
|
MLA |
Fantasia, A.,et al."Development of a machine learning interatomic potential for exploring pressure-dependent kinetics of phase transitions in germanium".JOURNAL OF CHEMICAL PHYSICS 161.1(2024).
|
条目包含的文件 | 条目无相关文件。 |
|
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论