中文版 | English
题名

CT-Based Super-Resolution Deep Learning Models with Attention Mechanisms for Predicting Spread Through Air Spaces of Solid or Part-Solid Lung Adenocarcinoma

作者
通讯作者Gong, Jingshan
发表日期
2024-06-01
DOI
发表期刊
ISSN
1076-6332
EISSN
1878-4046
卷号31期号:6
摘要
Rationale and Objectives: Spread through air space (STAS) is a novel invasive pattern of lung adenocarcinoma (LUAD), and preoperative knowledge of STAS status is helpful in choosing an appropriate surgical approach. Materials and Methods: This retrospective study collected and analyzed 602 patients diagnosed with LUAD from two medical centers: center 1 was randomly partitioned into training ( n = 358) and validation cohorts ( n = 154) at a 7:3 ratio; and center 2 was the external test cohort ( n = 90). Super resolution was performed on all images to acquire high-resolution images, which were used to train the SEResNet50 model, before creating an equivalent parameter ResNet50 model. Disparities were compared between the two models using receiver operating characteristic curves, area under the curve, accuracy, precision, sensitivity, and specificity. Results: In this study, 512 and 90 patients with LUAD were enrolled from centers 1 and 2, respectively. The curve values of the SEResNet50 and ResNet50 models were compared for training, validation, and test cohorts, resulting in values of 0.933 vs 0.909, 0.783 vs 0.728, and 0.806 vs 0.695, respectively. In the external test cohort, the accuracy of the SE-ResNet50 model demonstrated a 10% improvement over the ResNet50 model (82.2% vs 72.2%). Conclusion: The SE-ResNet50 model based on computed tomography super-resolution has great potential for predicting STAS status in patients with solid or partially solid LUAD, with superior predictive performance compared to traditional deep learning models.
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
通讯
资助项目
National Natural Science Foundation of China[82172026]
WOS研究方向
Radiology, Nuclear Medicine & Medical Imaging
WOS类目
Radiology, Nuclear Medicine & Medical Imaging
WOS记录号
WOS:001266509800001
出版者
ESI学科分类
CLINICAL MEDICINE
来源库
Web of Science
引用统计
被引频次[WOS]:1
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/789917
专题南方科技大学第一附属医院
作者单位
1.Jinan Univ, Clin Med Coll 2, Shenzhen, Guangdong, Peoples R China
2.Jinan Univ, Southern Univ Sci & Technol, Shenzhen Peoples Hosp, Dept Radiol,Clin Med Coll 2,Affiliated Hosp 1, Floor 1,Bldg 4,Dongbeilu 1017, Shenzhen 518020, Guangdong, Peoples R China
3.Chinese Acad Med Sci, Shenzhen Ctr, Dept Radiol, Canc Hosp, Shenzhen, Peoples R China
通讯作者单位南方科技大学第一附属医院
推荐引用方式
GB/T 7714
Wang, Shuxing,Liu, Xiaowen,Jiang, Changsi,et al. CT-Based Super-Resolution Deep Learning Models with Attention Mechanisms for Predicting Spread Through Air Spaces of Solid or Part-Solid Lung Adenocarcinoma[J]. ACADEMIC RADIOLOGY,2024,31(6).
APA
Wang, Shuxing.,Liu, Xiaowen.,Jiang, Changsi.,Kang, Wenyan.,Pan, Yudie.,...&Gong, Jingshan.(2024).CT-Based Super-Resolution Deep Learning Models with Attention Mechanisms for Predicting Spread Through Air Spaces of Solid or Part-Solid Lung Adenocarcinoma.ACADEMIC RADIOLOGY,31(6).
MLA
Wang, Shuxing,et al."CT-Based Super-Resolution Deep Learning Models with Attention Mechanisms for Predicting Spread Through Air Spaces of Solid or Part-Solid Lung Adenocarcinoma".ACADEMIC RADIOLOGY 31.6(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Wang, Shuxing]的文章
[Liu, Xiaowen]的文章
[Jiang, Changsi]的文章
百度学术
百度学术中相似的文章
[Wang, Shuxing]的文章
[Liu, Xiaowen]的文章
[Jiang, Changsi]的文章
必应学术
必应学术中相似的文章
[Wang, Shuxing]的文章
[Liu, Xiaowen]的文章
[Jiang, Changsi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。