中文版 | English
题名

Inference for possibly misspecified generalized linear models with nonpolynomial-dimensional nuisance parameters

作者
通讯作者Hong, Shaoxin
发表日期
2024-05-01
DOI
发表期刊
ISSN
0006-3444
EISSN
1464-3510
摘要
It is routine practice in statistical modelling to first select variables and then make inference for the selected model as in stepwise regression. Such inference is made upon the assumption that the selected model is true. However, without this assumption, one would not know the validity of the inference. Similar problems also exist in high-dimensional regression with regularization. To address these problems, we propose a dimension-reduced generalized likelihood ratio test for generalized linear models with nonpolynomial dimensionality, based on quasilikelihood estimation that allows for misspecification of the conditional variance. The test has nearly oracle performance when using the correct amount of shrinkage and has robust performance against the choice of regularization parameter across a large range. We further develop an adaptive data-driven dimension-reduced generalized likelihood ratio test and prove that, with probability going to one, it is an oracle generalized likelihood ratio test. However, in ultrahigh-dimensional models the penalized estimation may produce spuriously important variables that deteriorate the performance of the test. To tackle this problem, we introduce a cross-fitted dimension-reduced generalized likelihood ratio test, which is not only free of spurious effects, but robust against the choice of regularization parameter. We establish limiting distributions of the proposed tests. Their advantages are highlighted via theoretical and empirical comparisons to some competitive tests. An application to breast cancer data illustrates the use of our proposed methodology.
关键词
相关链接[来源记录]
收录类别
语种
英语
学校署名
其他
资助项目
National Science Foundation of China["72303131","12271238"] ; Guangdong National Science Foundation[2017A030313012] ; Shenzhen Sci-Tech fund[JCYJ20210324104803010]
WOS研究方向
Life Sciences & Biomedicine - Other Topics ; Mathematical & Computational Biology ; Mathematics
WOS类目
Biology ; Mathematical & Computational Biology ; Statistics & Probability
WOS记录号
WOS:001271042100001
出版者
ESI学科分类
MATHEMATICS
来源库
Web of Science
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/789921
专题理学院_统计与数据科学系
作者单位
1.Shandong Univ, Ctr Econ Res, Shanda S Rd 27, Jinan 250000, Peoples R China
2.Univ North Carolina Charlotte, Dept Math & Stat, 9201 Univ City Blvd, Charlotte, NC 28223 USA
3.Southern Univ Sci & Technol, Dept Stat & Data Sci, 1088 Xueyuan Blvd, Shenzhen 518055, Peoples R China
推荐引用方式
GB/T 7714
Hong, Shaoxin,Jiang, Jiancheng,Jiang, Xuejun,et al. Inference for possibly misspecified generalized linear models with nonpolynomial-dimensional nuisance parameters[J]. BIOMETRIKA,2024.
APA
Hong, Shaoxin,Jiang, Jiancheng,Jiang, Xuejun,&Wang, Haofeng.(2024).Inference for possibly misspecified generalized linear models with nonpolynomial-dimensional nuisance parameters.BIOMETRIKA.
MLA
Hong, Shaoxin,et al."Inference for possibly misspecified generalized linear models with nonpolynomial-dimensional nuisance parameters".BIOMETRIKA (2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Hong, Shaoxin]的文章
[Jiang, Jiancheng]的文章
[Jiang, Xuejun]的文章
百度学术
百度学术中相似的文章
[Hong, Shaoxin]的文章
[Jiang, Jiancheng]的文章
[Jiang, Xuejun]的文章
必应学术
必应学术中相似的文章
[Hong, Shaoxin]的文章
[Jiang, Jiancheng]的文章
[Jiang, Xuejun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。