中文版 | English
题名

Reconstructing Soft Robotic Touch via In-Finger Vision

作者
通讯作者Wan, Fang; Song, Chaoyang
发表日期
2024-07-01
DOI
发表期刊
EISSN
2640-4567
摘要
["Incorporating authentic tactile interactions into virtual environments presents a notable challenge for the emerging development of soft robotic metamaterials. In this study, a vision-based approach is introduced to learning proprioceptive interactions by simultaneously reconstructing the shape and touch of a soft robotic metamaterial (SRM) during physical engagements. The SRM design is optimized to the size of a finger with enhanced adaptability in 3D interactions while incorporating a see-through viewing field inside, which can be visually captured by a miniature camera underneath to provide a rich set of image features for touch digitization. Employing constrained geometric optimization, the proprioceptive process with aggregated multi-handles is modeled. This approach facilitates real-time, precise, and realistic estimations of the finger's mesh deformation within a virtual environment. Herein, a data-driven learning model is also proposed to estimate touch positions, achieving reliable results with impressive R2 scores of 0.9681, 0.9415, and 0.9541 along the x, y, and z axes. Furthermore, the robust performance of the proposed methods in touch-based human-cybernetic interfaces and human-robot collaborative grasping is demonstrated. In this study, the door is opened to future applications in touch-based digital twin interactions through vision-based soft proprioception.","In this study, a vision-based approach is introduced to learning proprioceptive interactions by reconstructing the shape and touch of a soft robotic metamaterial during physical engagements. It enables real-time, precise estimations of mesh deformation and touch positions in a virtual environment, showcasing the potential for touch-based digital twin interactions.image (c) 2024 WILEY-VCH GmbH"]
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
第一 ; 通讯
资助项目
National Natural Science Foundation of China[62206119] ; Shenzhen Long-Term Support for Higher Education at SUSTech[20231115141649002] ; SUSTech Virtual Teaching Lab for Machine Intelligence Design and Learning[Y01331838] ; Science, Technology, and Innovation Commission of Shenzhen Municipality["JCYJ20220818100417038","JSGG20220831110002004"]
WOS研究方向
Automation & Control Systems ; Computer Science ; Robotics
WOS类目
Automation & Control Systems ; Computer Science, Artificial Intelligence ; Robotics
WOS记录号
WOS:001268838200001
出版者
来源库
Web of Science
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/789956
专题南方科技大学
作者单位
1.Southern Univ Sci & Technol, SUSTech Inst Robot, Shenzhen, Peoples R China
2.Southern Univ Sci & Technol, Ocean Sci & Engn, Shenzhen, Peoples R China
3.Southern Univ Sci & Technol, Sch Design, Shenzhen, Peoples R China
4.Southern Univ Sci & Technol, Mech & Energy Engn, Shenzhen, Peoples R China
第一作者单位南方科技大学
通讯作者单位南方科技大学
第一作者的第一单位南方科技大学
推荐引用方式
GB/T 7714
Guo, Ning,Han, Xudong,Zhong, Shuqiao,et al. Reconstructing Soft Robotic Touch via In-Finger Vision[J]. ADVANCED INTELLIGENT SYSTEMS,2024.
APA
Guo, Ning.,Han, Xudong.,Zhong, Shuqiao.,Zhou, Zhiyuan.,Lin, Jian.,...&Song, Chaoyang.(2024).Reconstructing Soft Robotic Touch via In-Finger Vision.ADVANCED INTELLIGENT SYSTEMS.
MLA
Guo, Ning,et al."Reconstructing Soft Robotic Touch via In-Finger Vision".ADVANCED INTELLIGENT SYSTEMS (2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Guo, Ning]的文章
[Han, Xudong]的文章
[Zhong, Shuqiao]的文章
百度学术
百度学术中相似的文章
[Guo, Ning]的文章
[Han, Xudong]的文章
[Zhong, Shuqiao]的文章
必应学术
必应学术中相似的文章
[Guo, Ning]的文章
[Han, Xudong]的文章
[Zhong, Shuqiao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。