中文版 | English
题名

Confidence correction for trained graph convolutional networks

作者
通讯作者Guo, Huanlei
发表日期
2024-12-01
DOI
发表期刊
ISSN
0031-3203
EISSN
1873-5142
卷号156
摘要
Adopting Graph Convolutional Networks (GCNs) for transductive node classification is a hot research direction in artificial intelligence. Vanilla GCNs are primarily under-confident and struggle to clarify the final classification results explicitly due to the lack of supervision. Existing works mainly alleviated this issue by improving annotation deficiency and introducing addition regularization terms. However, these methods need to re-train the model from the beginning, which is computationally expensive for large dataset and model. To deal with this problem, a novel confidence correction mechanism (CCM) for trained GCNs is proposed in this work. Such mechanism aims at calibrating the confidence output of each node in the inference stage by jointly inferring the feature and predicted pseudo label. Specifically, in the inference stage, it uses the predicted pseudo label to select target-related features over all network to obtain a more confident and better result. Such selectivity is formulated as an optimization problem to maximize the category score of each node. In addition, the greedy optimization strategy is utilized to solve this problem and we have mathematically proven that the proposed mechanism can reach the local optimum by mathematical induction. Note that such mechanism is flexible and can be introduced to most GCN-based model. Extensive experimental results on benchmark datasets show that the proposed method can promote the confidence of the final target category and improve the performance of GCNs in the inference stage.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
Funda-mental Research Funds for the Provincial Universities of Zhejiang[GK229909299001-001] ; Zhejiang Provincial Natural Science Foundation of China["LR22F020001","LY22F020028","LDT23F02025F02"] ; Natural Science Foundation of China["62286082","62072147"]
WOS研究方向
Computer Science ; Engineering
WOS类目
Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号
WOS:001276406900001
出版者
ESI学科分类
ENGINEERING
来源库
Web of Science
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/789968
专题理学院_统计与数据科学系
作者单位
1.Zhejiang Univ Technol, Coll Math Sci, Hangzhou 310023, Peoples R China
2.Southern Univ Sci & Technol, Dept Stat & Data Sci, Shenzhen 518055, Peoples R China
3.East China Normal Univ, Sch Data Sci & Engn, Shanghai 200333, Peoples R China
4.Hangzhou Dianzi Univ, Sch Comp Sci & Technol, Hangzhou 310018, Peoples R China
5.Zhejiang Zhongcai Pipes Sci & Technol Co Ltd, Xinchang 312500, Peoples R China
6.Hangzhou Dianzi Univ, Shangyu Inst Sci & Engn, Shangyu 312300, Peoples R China
7.China Acad Elect & Informat Technol CETC, Beijing 100041, Peoples R China
通讯作者单位统计与数据科学系
推荐引用方式
GB/T 7714
Yuan, Junqing,Guo, Huanlei,Zhou, Chenyi,et al. Confidence correction for trained graph convolutional networks[J]. PATTERN RECOGNITION,2024,156.
APA
Yuan, Junqing.,Guo, Huanlei.,Zhou, Chenyi.,Ding, Jiajun.,Kuang, Zhenzhong.,...&Liu, Yuan.(2024).Confidence correction for trained graph convolutional networks.PATTERN RECOGNITION,156.
MLA
Yuan, Junqing,et al."Confidence correction for trained graph convolutional networks".PATTERN RECOGNITION 156(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Yuan, Junqing]的文章
[Guo, Huanlei]的文章
[Zhou, Chenyi]的文章
百度学术
百度学术中相似的文章
[Yuan, Junqing]的文章
[Guo, Huanlei]的文章
[Zhou, Chenyi]的文章
必应学术
必应学术中相似的文章
[Yuan, Junqing]的文章
[Guo, Huanlei]的文章
[Zhou, Chenyi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。