中文版 | English
题名

TNDF-Fusion: Implicit Truncated Neural Distance Field for LiDAR Dense Mapping and Localization in Large Urban Environments

作者
通讯作者Zhang, Wei; Yu, Hongyu
发表日期
2024-09-01
DOI
发表期刊
ISSN
2377-3766
卷号9期号:9
摘要
Large-scale 3D mapping is an important task for robotics and autonomous driving. However, mobile robots and autonomous vehicles with limited hardware resources may face issues with large memory consumption. It is challenging to achieve a balance between mapping quality and memory consumption. To address this issue, we propose a new compact implicit neural map representation - the Tri-Pyramid that can infer the Truncated Neural Distance Field (TNDF) given an arbitrary 3D position. Additionally, we introduce a TNDF label rectification method considering both the direction of ground normals and closest surface points to enhance the precision of supervision signals for training with a set of effective loss functions. Experiments on public datasets demonstrated that our method reaches comparable or superior performance for dense mapping while significantly reducing memory consumption compared to previous LiDAR mapping approaches. Furthermore, our study confirms the scalability and adaptability of our approach from room-scale to city-scale scenes. Moreover, we explore the potential of directly leveraging the implicit neural map representation for localization tasks by solving an optimization problem. The experiments showcase the accurate localization capabilities of our method in various scenarios.
关键词
相关链接[来源记录]
收录类别
SCI ; EI
语种
英语
学校署名
通讯
资助项目
Innovation and Technology Commission of HKSAR[ITS/036/21FP] ; Project of Hetao Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone[HZQB-KCZYB-2020083]
WOS研究方向
Robotics
WOS类目
Robotics
WOS记录号
WOS:001273087700007
出版者
来源库
Web of Science
引用统计
成果类型期刊论文
条目标识符http://sustech.caswiz.com/handle/2SGJ60CL/789975
专题工学院_系统设计与智能制造学院
作者单位
1.Hong Kong Univ Sci & Technol, Cheng Kar Shun Robot Inst, Hong Kong, Peoples R China
2.Southern Univ Sci & Technol, Sch Syst Design & Intelligent Mfg, Shenzhen 518055, Peoples R China
3.Great Bay Univ, Sch Engn, Dongguan 523106, Peoples R China
4.Hong Kong Univ Sci & Technol, Robot Inst, Hong Kong 999077, Peoples R China
5.HKUST Shenzhen Hong Kong Collaborat Innovat Res In, Shenzhen, Peoples R China
通讯作者单位系统设计与智能制造学院
推荐引用方式
GB/T 7714
Chen, Zhiming,Zhang, Kun,Chen, Hua,et al. TNDF-Fusion: Implicit Truncated Neural Distance Field for LiDAR Dense Mapping and Localization in Large Urban Environments[J]. IEEE ROBOTICS AND AUTOMATION LETTERS,2024,9(9).
APA
Chen, Zhiming,Zhang, Kun,Chen, Hua,Wang, Michael Yu,Zhang, Wei,&Yu, Hongyu.(2024).TNDF-Fusion: Implicit Truncated Neural Distance Field for LiDAR Dense Mapping and Localization in Large Urban Environments.IEEE ROBOTICS AND AUTOMATION LETTERS,9(9).
MLA
Chen, Zhiming,et al."TNDF-Fusion: Implicit Truncated Neural Distance Field for LiDAR Dense Mapping and Localization in Large Urban Environments".IEEE ROBOTICS AND AUTOMATION LETTERS 9.9(2024).
条目包含的文件
条目无相关文件。
个性服务
原文链接
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
导出为Excel格式
导出为Csv格式
Altmetrics Score
谷歌学术
谷歌学术中相似的文章
[Chen, Zhiming]的文章
[Zhang, Kun]的文章
[Chen, Hua]的文章
百度学术
百度学术中相似的文章
[Chen, Zhiming]的文章
[Zhang, Kun]的文章
[Chen, Hua]的文章
必应学术
必应学术中相似的文章
[Chen, Zhiming]的文章
[Zhang, Kun]的文章
[Chen, Hua]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
[发表评论/异议/意见]
暂无评论

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。